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Abstract

In this dissertation, we investigate the issue of robust localization in swarms of heteroge-
neous mobile agents with multiple and time-varying sensing modalities. Our focus is the
development of filter-based and decoupled estimators under the assumption that agents
possess communication and processing capabilities.

In the beginning, we study the filter-based Collaborative State Estimation (CSE) on
a networked system model and propose a novel and approximation-based algorithm for
Distribued CSE (DCSE). Then, we apply our insights from DCSE, to address the problem
of modularity and scalability in multi-sensor fusion on a single agent. We demonstrate suc-
cessfully that filter decoupling strategies originating from CSE can be applied to decouple
the state of an individual agent, leading to a truly modular estimation framework. In total,
three different strategies originating in the domain of DCSE were applied and compare
them against a state-of-the-art approach. In evaluations, we show that our proposed ap-
proach, is scaling best with the number of sensors and outperforms the state-of-the-art
approach in terms of accuracy. We underline that the application of our CSE-inspired
method in such a context breaks the computational barrier. Otherwise, it would, for the
sake of complexity-reduction, prohibit the use of all available information or would lead
to significant estimator inconsistencies due to coarse approximations.

The modular fusion approaches allow us to revisit indoor localization using ranging de-
vices and to incorporate fully-meshed, tightly-coupled range measurements. Being able to
consider range measurements between the stationary ranging devices, allows us to improve
the self-calibration of those devices and to improve the estimation accuracy.

Based on the findings from DCSE and modular sensor fusion, we propose a novel
Kalman filter decoupling paradigm, which is termed Isolated Kalman Filtering (IKF).
This paradigm is formally discussed and the treatment of delayed measurement is studied.
The impact of approximation made was investigated on different observation graphs and
the filter credibility was evaluated on a linear system in a Monte Carlo simulation.

Finally, we propose multi-agent modular sensor fusion approach based on the IKF
paradigm, in order to cooperatively estimate the global state of a multi-agent system in
a distributed way and fuse information provided by different on-board sensors in a com-
putationally efficient way. As a consequence, this approach can be performed distributed
among agents, while (i) communication between agents is only required at the moment of
inter-agent joint observations, (ii) one agent acts as interim master to process state cor-
rections isolated, (iii) agents can be added and removed from the swarm, (iv) each agent’s
full state can vary during mission (each local sensor suite can be truly modular), and (v)
delayed and multi-rate sensor updates are supported.

Extensive evaluation on realistic simulated and real-world data sets show that the
proposed Isolated Kalman Filtering (IKF) paradigm, is applicable for both, truly modular
single agent estimation and distributed collaborative multi-agent estimation problems. By
providing detailed pseudocode for each approach and a source code for the IKF paradigm,
we hope to pave the way towards generic plug-and-play systems for challenging real-world
and multi-agent applications.
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Kurzfassung

In dieser Dissertation untersuchen wir die robuste Lokalisierung in Schwärmen von he-
terogenen, beweglichen Agenten mit mehreren und sich einer zeitlich ändernden Anzahl
an unterschiedlichen Sensoren. Der Fokus liegt hierbei auf filterbasierte Systemparame-
terschätzer (sogenannte Zustandsschätzer) unter der Annahme, dass individuelle Agenten
die Fähigkeit zur Kommunikation und Datenverarbeitung besitzen.

Zunächst betrachten wir das Problem der kollaborativen (agentenübergreifende) Zu-
standsschätzung, basierend auf Kalman-Filter Formulierungen, anhand eines generisch
modelierten und vernetzen Systems. Anschließend formulieren wir einen annäherungsba-
sierten Filter für verteilte kollaborative Zustandsschätzung.

Die gewonnenen Einsichten aus der kollaborativen Zustandsschätzung, werden an-
schließend im Bereich der modularen Multi-Sensor-Zustandsschätzung für individuelle
Agenten angewendet. Dabei können wir zeigen, dass Ansätze aus der kollaborativen Zu-
standsschätzung im Bereich der modularen Zustandsschätzung erfolgreich angewendet
werden können. Insgesamt werden drei Ansätze aus der kollaborativen Zustandsschätzung
in den Bereich der modularen Zustandsschätzung für individuelle Agent überführt und
mit einem weiteren modularen Ansatz verglichen. In unseren Evaluierungen zeigen wir,
dass der präsentierte Ansatz am besten mit der Anzahl an verwendeten Sensor skaliert
und dabei genauere Schätzungen als der native Ansatz liefert. Dadurch wird deutlich, dass
die gewonnenen Inspirationen aus dem Bereich der kollaborativen Zustandsschätzung die
Grenzen und Limitierungen in der Datenverarbeitung bändigen können. Alternativ müss-
te entweder auf verfügbaren Daten verzichtet oder Annäherungen getroffen werden, was
wiederum einen signifikanten Einfluss auf die Genauigkeit und Konsistenz der Schätzung.

Unser modulare Ansatz erlaubt es, ein bekanntes und teilweise ungelöstes Problem der
Lokalisierung im Innenbereich, basierend auf Distanzmessungen, anzugehen. Dabei werden
sämtliche Distanzmessungen eines voll vermaschten Netzes berücksichtigt. Das Einbezie-
hen von Messungen zwischen stationären Messgeräten erlaubt uns, neben einer Verbesse-
rung der Lokalisierungsgenauigkeit, auch die geschätzte Position dieser stationären Geräte
zu verbessern. Aufgrund der gewonnen Erkenntnisse aus den Bereichen der kollaborativen
und der modularen Zustandsschätzung, können wir ein neues Paradigma zur Entkoppe-
lung von Kalman-Filter Instanzen formulieren, welches wir als isolierten Kalman-Filter,
kurz IKF, bezeichnen.

Schließlich beschreiben wir einen Ansatz mit Hilfe des IKF Paradigmas, welcher die kol-
laborative und modulare Zustandsschätzung vereint. Dies erlaubt es den globalen Zustand
des Schwarms verteilt und die individuellen Zustände der Agenten modular und effizient
zu schätzen. Dieser verteilte Ansatz zeigt folgende Eigenschaften auf: (i) Kommunikation
zwischen Agenten wird nur während der Verarbeitung von gemeinsamen Messungen be-
nötigt, (ii) ein Agent übernimmt vorübergehend die Verantwortung über die Berechnung
der gemeinsamen Messung, (iii) Agenten können zur Laufzeit vom Schwarm entfernt oder
hinzugefügt werden, (iv) die lokale Zustandsgröße der individuellen Agenten kann sich zur
Laufzeit ändern, und (v) verzögerte oder asynchrone Sensordaten können ordnungsgemäß
berücksichtigt und verarbeitet werden.

x



Kurzfassung xi

Wir führen extensive Evaluierungen mittels realistisch simulierten und echten Sensor-
daten durch und können dabei zeigen, dass das IKF Paradigma sowohl auf die modulare
Zustandsschätzung auf individuellen Agenten als auch auf Agenten-übergreifenden kolla-
borativen Zustandsschätzung anwendbar und vorteilhaft ist. Zudem wird jeder Ansatz,
neben der Formulierung, mit einem detaillierten Pseudocode beschrieben und für das IKF
Paradigma der Quellcode bereitgestellt, in der Hoffnung, damit den Weg für generische
Plug-and-Play Navigationssysteme im Bereich von herausfordernden Schwarmanwendun-
gen bereitet zu haben.
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Chapter 1

Introduction

Collaboration plays a crucial role in the success and survival of numerous species across
diverse domains [171]. Performing actions collaboratively, enables, e.g., small groups of
ants to astonishingly transport significantly larger insects into their habitat. Through this
collaborative effort, ants leverage their individual strength, allowing them to overcome
challenges that would otherwise be insurmountable.

In a different domain, the field of astronomical observations, collaborative sensing
is necessary for optimal results. Notably, very-long-baseline interferometry (VLBI) are
established by combining receivers all over the world to capture and process a single
image of deep space. The collaboration within this sparsely distributed network of sensors
allows the acquisition of information that would otherwise remain beyond reach [172].

In the domain of automation, Henry Ford’s introduction of moving assembly lines
revolutionized production processes. In the beginning, manufacturing took advantage from
purely mechanical machines or actuators, but nowadays, modern robotics such as multi-
axis lift arms are accelerating and improving production lines immensely [170].

Expanding the scope of automation, it is noteworthy that robotics is no longer confined
to stationary systems. Instead, the inclusion of mobile entities, including agile devices like
multi-copters, has become part of humans world and form a pillar of the Anthropocene –
the geochronological epoch where the humankind has the most significant impact on the
earths biological, geological and atmospheric processes [169].

Collectively, these examples underline that collaboration among members of a group,
team, or species offers benefits that surpass those of isolated individuals. Therefore, col-
laboration between mobile robots is a natural next step, leading to significant benefits of
individual robots and allows them to achieve tasks that an individual would not be able
to. These advantages are typically realized through the distribution of workload, which,
in turn, can lead to a reduction in overall mission duration, enhanced accuracy, and im-
proved efficiency. However, it is important to mention that such benefits come along with
the necessity for communication and task coordination, which entail additional overhead
costs.

In context of this thesis, the problem of localization and navigation of groups of robots,
and more generally agents is studied. More specifically, how agent’s belief about their pose
(position and orientation) can be estimated by considering the belief of a single agent as
part of a group belief (constituting of many individual agents’ beliefs) and how individual’s
perception of its environment can be used to improve the group’s belief. Basically, the
question “Where am I?” is extended to the question “Where are we?” and “What do we
known about each other?”.

1
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1.1 Related Work
This chapter will illustrate that distributed state estimation in the area of networked
robotics and autonomous navigation is still an open and cluttered research field. A gen-
eral solution addressing all individual problems reaching from tracking of moving objects,
relative measurement to stationary object of interest/landmarks, relative measurements
between moving objects, over to measuring collaboratively a single phenomena, does not
exist. Solutions and approaches to these individual problems are fairly well understood,
but a generalized approach that can address and take advantage of the individual solutions
is still missing. An evidence is (and in spite of) the large number of (recent) publication
in individual domains.

Generally, the domain of distributed state estimation and Kalman filtering [77] is rather
broad, as the bibliographic review by Mahmoud and Khalid unveils in [99]. In [142], Sun
et al. provide a review on distributed sensor fusion in networked system, covering different
centralized and distributed solutions and network specific phenomena, such as packet
dropouts, random latency due to transmissions delays, information quantization, etc..

The related work discussed in this thesis is split into three – autonomous navigation
specific – domains with subcategories: (i) Collaborative Localization (CL), Collaborative
Target Tracking, and (iii) Modular Sensor Fusion (MSF) with focus on filter-based ap-
proaches.

Optimization-based approaches are becoming more and more important due to in-
creased processing capabilities of today’s hardware. Their batch-processing is more accu-
rate, computationally intensive, and leads typically to a higher processing latency, which
in the case of estimation has a negative impact on the control behavior in dynamic environ-
ments. In optimization-based approaches, the issue of high sensor rates (e.g., of an IMU)
is well known. For instance, Forster et al. proposed in [41] a pre-integration technique
reducing the computational burden. Nonetheless, by assuming a swarm consisting of mul-
tiple agents, where each individual is equipped with many fast sensors, is still challenging
for these approaches. The same holds for a naive and centralized filter-based estimator,
which renders CSE impractical.

Therefore, Kalman filter decoupling strategies need to be applied, enabling parallelism
for load distribution and a distributed architecture to address a problem collaboratively
with individual agents that posses communication and processing capabilities.

Our focus is in particular on collaborative localization by encountering relative mea-
surements between robots using distributed filter-based approaches, but the other domains
are covered to provide a wider view on the topic. We apologize in advance for any omission
of publications and potentially disregarding relevant aspects.

We do not covered high level aspects such as collaborative exploration (e.g., [19]),
self-aware navigation (e.g., [158]), or formation control (e.g., [30]).

1.1.1 Historical Review
This historical review will focus on filter-based approaches and more specifically on those
based on the Kalman filter introduced by Rudolf E. Kalman in 1960 [77], to obtain an
impression which topics have been addressed until the first distributed collaborative local-
ization approach was published four decades later by Roumeliotis and Bekey in 2000 [123].
In 1966, Schmidt introduced nuisance parameters, where the mean is assumed to be con-
stant and known, but the parameter’s uncertainty and correlation to other estimates is
considered [129].

Later in 1976, parallel Kalman filtering for a multi-sensor system consisting of, e.g.,
multiple radar or cameras are observing the same object of interest (e.g. an aircraft,
pedestrian, re-entry body) from different stationary and a priori known positions was
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introduced by Willner et al. in [151].
This approach was further refined by Hashemipour et al. in 1988, with a particular

interest on scalability with respect to the total number of sensors, as the processing of
obtained measurements on a centralized entity becomes impractical [56]. Solutions are
parallel filters, where measurement updates are computed in parallel, which is in contrast
to sequential filters, where the filter is updated sequentially (with zero prediction time)
in blocks of statistically independent data. In parallel filtering, one needs to distinguish
between synchronously (all measurements can be related to a single timestamp) and ran-
domly collected data. Hashemipour et al. mentioned in [56] different levels of parallelizing
the Kalman filter equation: parallelism at the time-update level, at the measurement-
update level, via segmentation and via decoupling the time-prediction (predictor) and the
measurement update step (corrector).

In 1990, Durrant-Whyte et al. describe a fully decentralized architecture for data fu-
sion problems for networks of sensors nodes [34]. In 1992, Grime et al. investigated on the
communication in decentralized data-fusion systems [51]. In 1993, a multisensor surveil-
lance system for, e.g., target tracking in a decentralized sensing architecture was presented
by Roa et al. in [119]. They extended the decentralized Kalman filter formulation from
a hierachically distributed system [56] (central processing and communication facilities)
into a fully connected decentralized processing architecture.

In 1994, Kurazume et al. addressed the cooperative positioning with multiple robots as
portable landmarks that need to follow certain motion strategies [84], followed by studies
on optimal movement. These approaches have some significant limitations as only one
robot of the team is allowed to move for a certain time (some scheduling is needed) and
robots must maintain direct visual and communication contact over time.

In 2000, Roumeliotis and Bekey, provide a more generic and versatile solution, allowing
robots to move simultaneously without the need for persistent communication and visual
contact [123]. The proposed cross-covariance factorization allows a fully distributed state
propagation step/cycle, which is a key ingredient of the proposed approaches.

1.1.2 Collaborative Localization
Regarding DCSE for autonomous robotic navigation, a large body of work and approaches
were developed to tackle the cooperative localization problem. Typically, proprioceptive
measurements that monitor the motion of the robot are combined with exteroceptive
measurements, that provide information about the environment and its signals (pressure,
noise, gas) or signatures (features landmarks) [123]. Collaborative localization is achieved
when multiple agents are sharing their location and sensor information among others to
improve both, their own (ego) estimates and, at the same time, the estimates of collaborat-
ing agents [39]. Additionally, Collaborative Localization (CL) enables to consider another
sort of exterocetive measurements: exteroceptive measurements that describe relations be-
tween individual agents, e.g., relative angle/bearing, position, orientation, distance, etc.
measurements, which we call joint or collective observations, as these allow to estimate
multiple agents states jointly, see e.g., [101]. A disadvantage of joint observation is the
introduced complexity in the filter formulation, due to statistical coupling between indi-
vidual agents.

In the past decades, different approaches for collective multi-agent localization have
been presented, while the challenges in filter-based approaches are (i) to decouple the indi-
vidual agents (statistically) to relax the communication constraints, and at the same time
(ii) to maintain and account for correlations between agents to achieve consistent esti-
mates. Another objective is to reduce the substantial computational and bookkeeping ef-
forts for the correlations in swarms of communicating agents. These distributed approaches
can be roughly classified as (i) centralized-equivalent (e.g., [8, 67, 80, 97, 108, 121]), (ii)
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approximated correlations (e.g., [76, 95]), (iii) CI-based methods for unknown correlations
(e.g., [7, 23, 91, 148]), (iv) optimizing correlations (e.g., , [162]), and (v) optimization-based
methods (e.g., , Maximum A Posteriori (MAP)-based, e.g., [114], factor-graph based,
e.g., [69, 81]), Maximum Likelihood Estimation (MLE)-based, e.g., [64]), (vi) sampling
based approaches Monte Carlo localization (MCL), represents the a-posteriori belief as a
set of weighted random samples or particle, name particle filter (PF)), which was, e.g.,
proposed by Dellaert et al. [31] or Fox et al. [44].

With respect to our approaches, the seminal work [121, 123] by Roumeliotis and Bekey
investigated on decoupling the state propagation equation of a centralized multiagent EKF.
Their proposed factorization/decomposition of cross-covariance terms allows distributed
local (isolated) state propagation, and plays an important role in the proposed approaches.
However, each private and joint measurements require mesh-based connectivity among all
𝑁 agents to exchange information among themselves, resulting in a communication link
complexity of 𝒪(𝑁2) per update. Despite that, they explicitly addressed the problem of
sensor data interdependencies that appear from joint observations. In an empirical study,
they show an improved accuracy and reduced uncertainty due to information flow through
interdependencies (correlations), which constitutes a form of sensor sharing.

Later, a theoretical analysis of the influence of the homogeneous swarms’ size and
sensors configuration with respect the localization accuracy and the upper uncertainty
bound was covered, for instance in [101, 102, 108, 109, 111, 122, 126] and are summarized
in a discussion on the properties of CSE in Section 3.2.6.

Madhavan et al. [97], applied heterogeneous cooperative localization in absence of
absolute sensors in outdoor terrain.

In [80], Kia et al. present a DCSE algorithm that is exactly equivalent to a central-
ized EKF algorithm. In their algorithm, the propagation step is decoupled, but only one
pairwise relative update can happen simultaneously in the network, since the intermediate
correction terms, which each node uses to update its estimates, must be broadcasted. Fur-
ther this imposes that the communication graph must be a direct graph, with a root at the
interim master. To overcome communication range limits, each node needs to re-broadcast
every received message, introducing latency, causes potential network congestion, and ac-
quiring additional bandwidth. Further this approach assumes single pair-wise relative ob-
servations at the time to be the only source of state correction/updates, meaning individual
nodes cannot perform private observation (e.g. GPS measurements) meanwhile/simulta-
neously. Multiple, synchronized pairwise relative measurements can be performed, but a
certain sequential-updating-order must be ensured.

In our approach, no restrictions regarding the network topology, nor regarding type of
observation and sequence are given, since updates are performed isolated among partici-
pating agents, allowing a communication link complexity of 𝒪(1) among the participating
nodes, while in [80], the worst case communication complexity per node per relative mea-
surement is 𝒪(𝑁2). Similar to our approach, the size of a message is independent from
the group size, thus the communication message size is of order 𝒪(1).

The use of CI can help to reduce extensive bookkeeping in a decentralized approach.
CI, introduced by Julier and Uhlman in [71], is a convex optimization problem to account
for unmodeled/unknown correlations between beliefs of the same stochastic process in a
conservative but provable consistent fashion. Therefore, CI is used in CL to fuse the beliefs
of multiple group states that are maintained per agent [7], or to fuse projected estimates
from other agents relative observation accounting the local belief, e.g., in [23, 148].

The downsides of the later are twofold. First, it is rather limited to a specific type of
relative observation, which has to be directly and statistically combined with local state
variables to obtain an observation on a different agent. Second, only one estimator benefits
from the relative measurement, while in our approach all estimators participating in a joint
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update obtain a correction. According to Wanashinghe et al. [148], this leads to overly
pessimistic estimates, as the belief is assumed to be maximally correlated, on the other
hand Carillo-Arce et al. state in [23] that, Split-Covariance Intersection Filter (SCIF)
proposed by Li et al. in [91] may lead to overly optimistic and inconsistent estimates, as
the beliefs are either directly or indirectly correlated to other agents’ beliefs. To fix that,
Wanashinghe et al. proposed in [148] to reset the independent part in the SCIF.

In [161, 162], Zhu and Kia proposed the Distributed Discorrelated Minimum Variance
(DDMV) approach to discorrelate the agents’ local beliefs by weighting and underesti-
mating them. This reduces both communication and maintenance cost to 𝒪(1), yielding
a highly scalable, but pessimistic approach. Unfortunately, this approach did not work as
shown in Figure 3.10 due to inconsistencies.

Later, Zhu and Kia presented in [162] the Estimated Cross-covariance Minimum Vari-
ance (ECMV) approach to reduce the conservatism of DDMV by estimating the unknown
cross-covariance between agents in a cascaded optimization. In their evaluations, ECMV
outperforms DDMV at the cost of 150× longer processing times for joint updates, thus
it is not real-time capable.

In [95], Luft et al. proposed an approximation to account for unavailable correlations
between participating and non-participating agents in isolated joint observations. This
approximation approach requires communication only when agents meet (𝒪(1)) and the
maintenance effort for the interdependencies scales linearly with 𝒪(𝑁) for 𝑁 correlated
agents.

Jung and Weiss successfully applied this approximation in a more advanced estima-
tion problem on a group of Micro Aerial Vehicles (MAVs) in [73], using an error-state
EKF (ESEKF) with an IMU as state propagation sensor. We identified high sensor rates
(in aided inertial systems the IMU’s rate is typically between 100 Hz and 1 kHz), causing
tremendous maintenance effort and to be a limiting factor for the applicability in large
swarms. Therefore, Jung and Weiss proposed in [76] a common fixed size sliding buffer
for correction terms within each agent, allowing the maintenance cost to be invariant
to the number of known/correlated agents. We advance these approximation-based ap-
proaches in Chapter 7, by (i) generalizing Luft et al.’s approximation [95] in Chapter 6,
(ii) supporting growing and shrinking state vectors on agents, and (iii) supporting delayed
(out-of-order) measurements.

Recently, Shalaby et al. investigated on relative position estimation using range mea-
surements between multiple MAVs [132]. While the relative position, would be in case of
single ranging devices per agent unobservable, they studied the sufficient conditions in case
agents are equipped with a 9-Degrees of Freedom (DoF) IMU (including an accelerome-
ter, gyroscope, and magnetometer) and two or one ranging devices. They prove, that at
least two agents with two ranging devices are required to render the relative localization
problem observable. Obviously, there are degenerate cases, when e.g., the baseline between
the ranging devices is zero, if the baselines of the two agents are parallel, non-line-of-sight
conditions, or if the sensing and communication range is insufficient. Still, these condi-
tions can be mitigated and are relevant for formation control. Alternatively, Cossette et
al. showed in [27], that the relative position between two agents, each equipped with a
single ranging devices and a 9-DoF IMU, can be recovered by persistent and sufficient
motion in a sliding window filter (a optimization-based batch estimation framework with
a constant time-window) that exploits relative constraints at selected reference points by
combining range measurements and acceleration estimated. Recently, Cossette et al. in-
vestigated in [28] on improving the accuracy of relative pose estimates by optimizing the
formation/constellation of a swarm of MAVs that is obtaining inter-agent range measure-
ments. Each MAV is equipped with an IMU and two ranging devices (one on front left and
right arm of the quad-copter). Multiple tags per agents, can mitigate the requirement for
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persist excitation, i.e. persistent motion to render the state space observable, see e.g., [13,
49]. Alternatively, additional sensor that render the full state observable can be used, e.g.,
additionally stationary anchors or a Global Navigation Satellite System (GNSS) sensor.
Still having multiple tags per agents, tuples of tags must be non-collinear with other agents’
tags. The optimal formation is obtained by maximizing the Fisher information, which is
similar to [16], where optimal positions for the moving ultra-wideband (UWB) tag to ini-
tialize the positions of stationary UWB anchors were obtained by the same method. In
simulation and experiments, it was shown that the accuracy can be improved by a proper
choice of geometry, which depends also on the observation/measurement graph. Avoid-
ing collisions with obstacles and between agents is inherently supported by the proposed
approach and is realized by adding terms in the cost function.

Another distributed, but centralized-equivalent approach with sporadic and asyn-
chronous communication, was proposed by Allak et al. in [4]. At the moment of pair-wise
measurements, pre-computed scattering factors from both agents are exchanged and used
in the joint correction step to account for information obtained since their last encounter in
a statistically correct way. By encountering this factors, a centralized-equivalent estimate
can be obtained by very few operations at constant maintenance effort. The disadvantage
remains in the limit for pairwise state estimation and, thus, poor scalability.

1.1.3 Collaborative VIO
Visual-Inertial Odometry (VIO) tracks the ego-motion of locally fast drifting IMU odom-
etry by constraining/correcting the drift by visual observation of the environment, e.g.,
in [92]. In case agents are performing VIO, one can aim at using information obtained by
overlapping camera views.

CL assumes that agents can directly observe one another, which is, depending on the
sensor modalities not always possible, therefore indirect observations, e.g., via overlapping
camera views might be exploit to improve/correct the estimates [106].

In [1], Achtelik et al. proposed a pair-wise method to recover the relative pose between
two MAVs in absolute scale based on the individual’s IMU and monocular camera. How-
ever, this centralized EKF approach has certain limitation with respect to the flexibility
and scalability, which was the motivation of the distributed loosely-coupled VIO approach
proposed by Jung et al. in [73]. As in [1], it was assumed that the metrically scaled rel-
ative pose based on overlapping (stereo) camera views, is provided by a black box, while
the challenge is probabilistic re-alignment of the individual agents navigation frames to a
common one, such that they converge to a common reference. The first pair-wise relative
pose measurement was used to eliminate the navigation frame of one of the agents, e.g.,
based on the reference ID.

In [106], Melnyk et al. investigated on exploiting trails of a common feature in case of
overlapping camera views between two agents in a centralize filter formulation, in order to
improve the localization accuracy and studied the observability properties of the relative
transformation under different measurement scenarios. They proofed that at least five
common features must be determined at a single time step in order to recover 5-DoFs of
the relative pose. All 6-DoFs of the relative pose can be recovered, if at least three common
features are observed in two consecutive images, will this can be relaxed to two features
if the direction of the gravity vector is known.

Recently, Zhu et al. proposed in [163], a distributed collaborative VIO, where each
of the agents maintain locally it’s states and tries to leverage information obtained by
other robots, with global/centralized optimization or a centralized Fusion Center (FC),
which builds upon [166]. A distributed collaborative thermal-inertial odometry approach
was proposed by Polizzi et al. in [117] for a team of MAVs, that exchange information
when possible to refine their states using covariance intersection. Xu et al. proposed in
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[154] Omni-swarm, which allows each agent to incorporate stereo omnidirectional VIO
and ultra-wideband in the front-end, while in the back-end a graph-based optimization
is performed on own and broadcasted sensor data from agents to compute relative state
constraints.

1.1.4 Collaborative Simultaneous Localization and Mapping
Autonomous systems that need to navigate in unknown and infrastructure-free (e.g.,
GNSS-denied) environments, must rely on their proprioceptive and exteroceptive sensors,
which can be used to create an abstract representation of the environment by detecting
and mapping landmarks, which referred to as Simultaneous Localization and Mapping
(SLAM). Filter-based localization and mapping looks back on more than three decades of
research and is the union of two domains, navigation and mapping, with many relevant
existing work in each subdomain[39].

In 1991, Leonard and Durrant-Whyte investigated in [88] on simultaneous map build-
ing and localization for an autonomous mobile robot, and highlighted the problem of
correlation between estimated robot pose and the estimated target/landmark of interest.
A potential solution, proposed by Smith, Self, and Cheeseman [135] in 1990, is to maintain
a stochastic map using an EKF, with limitations that the system state vector size increases
linearly with the map size, but the computational complexity in an EKF increased cu-
bically with state dimension. Further, the data association is uncertain, e.g., by spurious
measurements or a wrong data association, which have negative impact on the estimation
performance and stability. The fundamental assumption that the observed landmarks in
the environment are static, might be violated by dynamic elements.

Similarly, Fox et al. identified in [43] as key problem of EKF-SLAM, that the uncer-
tainty of the mobile robot’s pose while exploring the environment, as it needs to be consid-
ered during generating the map. These interdependencies between the estimated pose and
the estimated landmarks makes the problem computationally demanding. In [144], Thrun
et al. introduced the sparse extended information filter (SEIF) for SLAM, and showed, by
forcing sparsity of the information matrix, that update can be processed in constant time.
A consistent EKF-based SLAM with linear complexity (with the number of landmarks)
was proposed by Nerurkar and Roumeliotis in [113].

In 2002, Fenwick et al. generalized EKF-SLAM to support collaborative robots [39],
denoted as Collaborative SLAM (CSLAM), in order to map an environment more quickly
and robustly than a single robot using a centralized filter. They proposed a theorem to
quantify the performance gain through collaboration and allows determining how many
vehicles are required to achieve a certain task. They stressed that in case of relative local-
ization between stochastic landmarks and the vehicle, the lower bound for the uncertainty
of the agent’s state is determined by the initial covariance of the agent at the time of
the first landmark observation. Meaning that, by performing stochastic mapping of the
environment, in the best case, the accumulated drift error can be bounded, if the initial
landmarks are revisited, but no gain with respect to the absolute error is obtained. In
case of multiple agents, the lower bound is determined by the sum of all collaborative
agents initial information matrix (inverse of covariance) at the moment of first landmark
or inter-agent observation [39]. Meaning that uncertainty of the entire swarm is, in the
limit of infinite observations, lower than the most accurate vehicle, while all agents are
contributing to the total information.

In [111], they investigated on an analytical upper bound of the position uncertainty in
a steady state condition in collaborative EKF-SLAM.

In [160], Zhou and Roumeliotis studied the problem of merging multiple agents maps
in case of a rendezvous (when agents are sensing each other and are within the commu-
nication range), which allows a swarm to jointly build a map (abstract representation of
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the environment) starting independently without any a-priori knowledge about the initial
spatial distribution swarm – a key to achieve a modular, flexible, and scalable swarm. The
idea is to measure a noisy relative pose between two agents to obtain a transformation for
aligning the individual maps and to compute a new joint covariance for the joint system.
After the (course) alignment, duplicated landmarks are identified using a search tree and
a hypothesis check based on the Mahalanobis distance (see Section 2.5.3). Then, identified
duplicated landmarks are used to impose constraints that improve the accuracy of the
merged map and reduces the state vector size. In general, the identification of duplicates
is sensitive to rotational errors, especially in large maps (i.e. due to the longer lever arm),
therefore landmarks close to the rendezvous need to be matched first and sequentially.

Apart from filter-based CSLAM, centralized, smoothing-based, or factor graph-based,
approaches have been proposed. In [32], Dellaert and Kaess introduced square root Smooth-
ing and Mapping (SAM). Later, a collaborative SAM approach was proposed by Andersson
and Nygards in [6] and Kim et al. introduces a relative formulation between multiple pose
graphs that allows to solve pose graphs jointly in order to provide a globally consistent
map [81]. In [168], Zou and Tan present a collaborative visual SLAM, denoted as CoSLAM,
which is gathering information from agents on a local server and is capable of clustering
dynamic elements in the environment.

Due to the computational complexity and constraints on, for instance MAVs, it is
reasonable or required to offload computational intensive processes to a central ground
station or to exploit edge computing facilities [59]. Forster et al. proposed in [42], a monoc-
ular CSLAM using multiple MAVs that stream selected features and relative poses to a
central FC, that creates and merges individual maps in case of detected overlaps. Sim-
ilarly, Schmuck and Chli [130] propose a mono CSLAM employing MAVs with limited
memory, that are transmitting collected information to a fusion center, which performs
time-consuming operations, such as loop-closure detection and optimizations (bundle-
adjustment) on large scale, and provides the agents with corrections. Karrer et al. proposed
in [78] a centralized collaborative visual-inertial SLAM (CVI-SLAM), where individual
agents are equipped with a visual-inertial sensor suite, while a fusion center (server) is
again performing the optimization on a large scale and providing agents with corrections.

1.1.5 Collaborative Target Tracking
The problem of combining multiple estimates of a state into a single and more accurate
estimate, is denoted as track-to-track fusion [164] and can be addressed by parallel or
distributed Kalman filtering, e.g., in [34, 56, 119].

For target tracking we can distinguish between immobile/stationary systems (e.g.,
[119]) and mobile system (e.g., [164]), while mobile systems are advantageous as they
may allow reducing the overall number of sensors for a specific scenario, and they can be
reconfigured to such that the perception/information gain of the target is increased [72].

In [119], Rao et al. applied a decentralized Kalman filter for multi-sensor data fusion
in a sensor network for (multi) target tracking, where each sensor node has processing
and fully-meshed communication capabilities. Each sensor is estimating a global state of
each target in a local KF. It fuses locally the obtained measurements by predicting the
local estimate based on a known system model. The measurement is validated based on
a hypothesis check and then used for updating the local belief. The error of the belief
is transmitted to other nodes, while at the same time, state error beliefs are received
from others. These errors are assimilated to obtain further variance and mean corrections.
One disadvantage is that potential correlations between individual sensors’ noise is not
considered. Apart from the synchronous communication constraint, they investigated on
asynchronous communication between nodes, which plays an important role for system
modularity and nodal autonomy.
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Generally, if the cross-correlation between sensors is known, the beliefs can be fused
using BLUE [9], if cross-correlations are unknown, they can be fused consistently using
CI [71], and if no correlation exist, they can be fused by exchanging and assimilating
correction terms [119].

1.1.6 Collaborative Localization and Target Tracking
Mirzaei et al. studied in [108], the accuracy of Collaborative Localization and Target
Tracking (CLATT) based on an EKF in a multi-robot system and derived a theoretical
upper bound at the steady state condition for the position uncertainty and showed that
jointly estimating the targets results in a better accuracy in the estimates of the individual
agents. Later, Chang et al. [24], studied the feasibility of [108] in different scenarios and
on different platforms.

In [3] Ahmad et al. proposed a optimization-based solution to cooperative robot lo-
calization and target tracking. Later, Ahmad et al. proposed in [2] an particle filter-based
approach that outperform a joint KF formulation and achieves similar results as an offline
batch optimization approach.

In [165], Zhu and Ren proposed a distributed filter-based multi-robot VIO approach
with collaborative object tracking, where one agent performs visual inertial SLAM to
bound the long-term drift of the individual agent’s VIO. Recently, Zhu and Ren introduced
in [165] and [164] a framework to distributively solve the CLATT problem without motion
strategies for the robots and requiring only one-hop communication with neighbors, while
preserving consistency.

1.1.7 Modular Sensor Fusion
Multi-sensor fusion can be regarded from different views. For instance, in [34], Durrant-
Whyte proposed a Decentralized Kalman Filter (DKF) as an implementation of a multi-
sensor EKF, divided into modules associated with each sensor, which can be applied for,
e.g., target tracking using a sensor network that is observing a common random process.
A different view might be the fusion of certain, maybe time-varying, sensor constellation-
s/configurations in multi-sensor EKF formulation – in best case in a plug and play fashion
– to achieve a certain navigation task. An example for a plug-and play Visual-Inertial
Navigation System (VINS) that support online self-calibration of certain sensor related
state is MIMC-VINS [36], proposed by Eckenhoff et al. . To avoid confusion we use for the
first case the term track-to-track fusion, and for the second case, modular sensor fusion,
while both are fusing observation from multiple sensors.

Existing multi-sensor fusion algorithms for navigation can be classified as optimization-
based (e.g. [25, 29, 128]) or filter-based (e.g. [18, 46, 58, 96, 150]) approaches. Optimization-
based methods result in more accurate estimates at the cost of computation time, while
filter-based approaches are computationally more efficient through marginalization but
struggle in correcting erroneous information in the past.

In [150], Weiss and Siegwart proposed a real-time capable loosely coupled visual aided
inertial estimator (based on an EKF), supporting any arbitrary exteroceptive position or
pose sensor.

Lynen et al. presented in [96] a filter framework for navigation as an extension of
[150] to support any number of sensors, iterative re-linearization, and an efficient strategy
for handling relative time measurements. Their architecture distinguishes between a core
state that is propagated by the IMU and auxiliary states that hold spatial and other
calibration information for the heterogeneous sensor suite. The simple approach tackling
delayed measurements impedes scaling in practice for several sensors due to increased
computational complexity. To address the computational burden to incorporate delayed
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measurements, Allak et al. proposed in [5] the use of star products between updates to
perform approximated one step recalculations.

In [58], Hausman et al. investigated on the self-initialization and self-calibration of
their multi-sensor fusion approach combining vision, Global Positioning System (GPS)
and range measurements. They could seamlessly switch between different sensor modal-
ities during an evaluation on a MAV. Further, an online failure detection was proposed,
evaluating the Chi-Square test (a hypothesis test) on the innovation/residual to avoid
incorporating erroneous out-of-order measurements.

Shen et al. proposed in [133], an Unscented Kalman Filter (UKF) approach that sup-
ports both heterogeneous absolute and relative time (multi-state constraint) updates. The
UKF simplifies the filter formulation compared to an EKF as no explicit calculation of
Jacobians or Hessian are necessary (deriving the Jacobians is known to be challenging)
as these are evaluated precisely through its sigma point propagation [147]. However, the
UKF introduces new challenges in propagating the augmented states.

In [37], Eckenhoff et al. proposed a tightly coupled EKF-based estimation framework,
that fuses asynchronous measurements from multiple IMUs and a single camera. This
framework allows for an online spatial and temporal calibration refinement between all
sensors, which reduces the offline calibration efforts and allows to compensate calibra-
tion errors. Due to redundant IMU, it is resilient to a single IMU failure and provides
uninterrupted (smooth) localization estimates in case of a detected failure.

Similarly, Geneva et al. recently published OpenVINS [46], which is a well documented
open source modular Multi-State Contraint Kalman Filter (MSCKF) framework including
a profound comparison against other state-of-the-art VINS algorithms. Our presented
approach does not explicitly address the problem of fusing visual information, based, e.g.,
on relative time updates of MSCKF algorithms [110]1.

We are not explicitly addressing the problem of fusing visual information, but our
proposed algorithm inherently supports, up to the time horizon of the history buffer,
relative time updates that can be used to account for relative time constraints between
states, which are the basis for MSCKF algorithms [110].

More recently, Eckenhoff et al. proposed in [36], a multi-IMU multi-camera VINS, that
is capable of fusion an arbitrary number of IMUs and uncalibrated cameras. It supports
a seamless fusion of asynchronous measurements, even in case of measurement depletion
or sensor failures, in a MSCKF formulation. In contrast to our formulation, the propaga-
tion/prediction of the full state happens at the moment a new camera image is available.
In our formulation, the IMU state is propagated at the moment IMU measurement is
received. Lee et al. proposed recently in [87] a MSCKF-based MMSF framework incorpo-
rating a Laser Imaging Detection and Ranging (LIDAR) feature tracking algorithm that
extracts plane patches which are used to from a motion constraint for the MSCKF update.

The previously mentioned multi-sensor fusion approaches operate on a full state, mean-
ing no state decoupling strategies are applied such that (i) sensors cannot be added and
removed during the mission, (ii) they are potentially ill-scaling with the total amount of
sensors, sensor delays and updates rates. To overcome this issue, Brommer et al. published
in [18] an open-source MMSF framework denoted as MaRS, that allows the addition and

1Relative time update, require stochastic clone of states [124], that allows incorporate relative time
constraints between beliefs in observations, while at the same time accounting for correlation between
these past beliefs. The proposed approach maintains a sliding pastime horizon of previous beliefs and the
corrections buffer allows tracking the change in correlation between two consecutive beliefs, meaning that
stochastic clones and their interdependencies can not be reconstructed directly, as not all correlations can
be recovered/maintained. Consequently, stochastic clones need to augment local full state, which can in
our modular formulation be realized by adding a new estimator instance to the system. The proposed state
decoupling approach allows reducing the maintenance effort for tracking correlations between stochastic
clones.
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removal of sensors at run-time. A significant speed-up is achieved by decoupling the core
state that is predicted (propagated) by a proprioceptive sensors (e.g., an IMU) from the
generic exteroceptive sensor states. As correlations are just maintained between the core
and sensor states (no inter-sensor correlations are considered), the propagation step is in-
variant to the total number of sensors. In case of ill conditioned joint covariances between
the core and a sensor state, different Eigenvalue correction strategies have been proposed.

More recently, Jung and Weiss bridged in [74] the gap between CSE and MMSF by
showing that techniques used in CSE for distributed agents to decouple their estimators
can be applied on local estimators to decouple states from different sensors. This new
perspective allowed us to port existing CSE methods and to compare them, including
our native MaRS approach. The Modular Multi-Sensor Fusion Decoupled Approximated
History (MMSF-DAH) approach [74] uses approximated correction terms for sensor obser-
vation and considers inter-sensor correlations, which is advantageous in terms of accuracy.
By using a common correction buffer for all correlations, the approach is invariant to the
total number of sensors.

Based on the MMSF-DAH approach, we proposed a probabilistic filter based MMSF
approach in [75] with the capability of using efficiently all information in a fully meshed
UWB ranging network for infrastructure-based UWB AINS with continuous anchor self-
calibration. This allows a simultaneous accurate mobile agent state estimation and cali-
bration of the ranging network’s spatial constellation. We advocate a new paradigm that
includes elements from DCSE and allows us considering all stationary UWB anchors and
the mobile agent as a distributed set of estimators/filters. Thus, our method can include
all meshed (inter-)sensor observations tightly coupled in a modular estimator and show
that decoupling paradigm can break the computational barrier in such a context.

A factor graph based modular estimation framework, WOLF, with a wrapper for Robot
Operating System (ROS)2, was introduced by Solà et al. in [138]. A key component is
the WOLF tree, a centralized data structure containing abstract base classes to address
robotics problems, for instance, sensors, features, etc.. These elements can be added to the
tree in a modular way and allows to setup different applications with great flexibility. In
the back-end a factor graph with it’s states and factors is solved with a nonlinear graph
solver. The author mentioned that the real-time performance need to improved, which is
a common weak point of related estimation frameworks. This provides us with additional
motivation to pursue with our recursive and modular estimation approach, that aims at
reducing the computational effort.

1.2 Contribution and Outline
Although the topic of multi-agent navigation has being addressed and studied for several
decades, the previously mentioned approaches have not been focusing on combining MMSF
and CSE in generalized framework. Additionally, in DCSE, the handling of asynchronous
and delayed measurements has not yet been explicitly covered and introduces additional
challenges. In fact, sensor measurements undergo a certain delay from the moment infor-
mation is perceived until it is actually processed. Due to the complexity of compensating
delayed measurements, it is mostly neglected. Having multiple sensors, the sensor delay
can vary, with the consequence that measurements are processed in a wrong order (out-of-
sequence). Consequently, the sensor data needs to be processed asynchronously or delayed
with respect to other sensor data or a common reference time.

The challenge for distributed processing architectures remains to allow for a loose
coupling between agents. Agents shall be able to join and exit the group at any time.
This way the need for a centralized processing unit can be mitigated, and the workload

2https://www.ros.org/
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can be distributed among them. Further, the group or swarm of agents is most probably
heterogeneous (in their type, shape, locomotion, or drive train) and capabilities (e.g.,
sensor configuration). For instance, in an exploration mission, different agents can be
equipped with different exteroceptive sensors or posses different capabilities, as shown
in Figure 1.1. During a mission, it might be needed to enable or disable sensors sporadically
in order to save energy or sensors may suffer from dropouts, etc.. Meaning the configuration
of the swarm should be able to scale in two dimensions. First with respect to the amount
of agents and second with respect to the number of active sensors per agent.

Figure 1.1: Use case for CSE: A heterogeneous swarm of four communicating agents,
with potentially a different sensor configuration, is navigating in space to achieve tasks.
Proprioceptive sensor data, held in orange, allows for a coarse and drifting dead-reckoning,
while exteroceptive sensor data, held in red, can reduce that drift and bound the uncertainty
of the estimated pose. Additionally, relative inter-agent measurements, held in blue, can
further refine the estimates, but lead to correlations between the agents’ estimates which
need to be maintained and considered properly.

This thesis carefully addresses these issues and studies the impact of sensor delay on
the processing time. The final algorithm is capable of handling (i) many sensors, (ii) a
time-varying number of sensors, (iii) asynchronous measurement, (iv) fast propagation
sensors, (v) and collaborative updates.

The key contribution of this thesis can be summarized as follows:
• We introduce a buffering scheme that allows for an efficient, but approximated, prop-

agation and correction of dated correlations between distributed estimator in Sec-
tion 3.3.5, which is beneficial in case of high state propagation rates.

• We bridge the gap between CSE and MMSF: three existing DCSE approaches are
implemented as modularized and decoupled EKFs. We propose in Section 4.3.1 a
novel scalable and general modular sensor fusion strategy for Kalman filters with
constant maintenance complexity for propagation and private update steps (if buffer
history suffices).
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• We formulate and propose a Kalman filter decoupling paradigm referred to as Iso-
lated Kalman Filtering (IKF) in Chapter 6. It builds upon approximations proposed
by Luft et al. in [95] and supports out-of-sequence measurements. We provide the
source code of a generic IKF framework, study the steady-state behavior in different
observation graphs, and perform a filter credibility analysis.

• We propose a unified filter architecture for MMSF and CSE based on the IKF
paradigm, termed DC-MMSF, in Chapter 7. It supports delayed measurements and
the maintenance effort for each decoupled sensor nodes is invariant to the number
of correlated sensors (𝒪(1)), if the buffer size is sufficient.

• We provide a detailed pseudocode for all proposed approaches.
The manuscript is structured as follows: In Chapter 2, we describe our notation, def-

initions, metrics, and filter formulation. In Chapter 3, we aim at generalizing filter-based
DCSE and compare different filter architectures. In Chapter 4, we propose a novel mod-
ular sensor fusion algorithm for a single agent, which finds application in Chapter 5 for
infrastructure-based UWB aided inertial navigation. In Chapter 6, we propose the Isolated
Kalman Filtering (IKF) paradigm, a key concept to decouple filter formulations, which
allows us to present a modular and multi-agent sensor fusion approach with support for
delayed measurements in Chapter 7. We conclude the thesis in Chapter 8, by summariz-
ing the contributions, discussing limitations, and providing an outlook on future research
directions.



Chapter 2

Fundamentals

In this chapter, we introduce our notation and nomenclature to improve readability and
to avoid ambiguity. In that spirit, fundamentals on spatial geometry, error-definitions and
metrics for state estimation, and our filter formulation are covered.

2.1 Basic Notation
Vectors are lower case bold, matrices capitalized bold. The transpose, inverse, conjugate are
{∙}T, {∙}−1, and {∙}*, respectively. The mean of a variable is ¯{∙}, the estimated quantity
^{∙}, and the error ˜{∙}. The time index, e.g., 𝑘, of a variable is in the right superscript {∙}𝑘

which related it a certain time 𝑡(𝑘) ≡ 𝑡𝑘. {∙}# specifies measured (perturbed) quantities,
and |∙| specifies the cardinality of a finite set.

For vectors and block matrices, semicolons and colons improve the readability such

that [A; B] =
[︂
A
B

]︂
and [A,B] =

[︀
A B

]︀
.

Names of reference frames are capitalized and calligraphic, e.g., {ℐ} for IMU (spatial
geometry is covered in Section 2.3). The upwards pointing z-axis of the navigation reference
frame {𝒢} is gravity aligned.

The operators � and � should emphasize that state vector elements need to be com-
posed appropriately and depends on the state space (product manifold1), the error type
(see Section 2.4), and error representation (see Section 2.8.6). Rotational and translational
components of a state vector have to be treated differently and are not necessary commu-
tative, e.g., biases are additive, while positions and velocities are defined in the local frame,
e.g., 𝒢

𝒢pℐ = 𝒢
𝒢p̂ℐ �

𝒢
ℐ p̃ℐ = 𝒢

𝒢p̂ℐ + 𝒢R̂ℐ
𝒢
ℐ p̃ℐ and 𝒢

ℐ p̃ℐ = �𝒢p̂ℐ �
𝒢
𝒢pℐ = 𝒢R̂T

ℐ (𝒢
𝒢pℐ −

𝒢
𝒢p̂ℐ).

Multivariate random variable
A normally distributed multivariate variable is defined as x𝑖 ∼ 𝒩 (x̂𝑖,Σ𝑖𝑖), with a mean
x̂𝑖 and covariance (uncertainty) Σ𝑖𝑖, which is called the belief of 𝑖. Covariance matrices
Σ of dimension 𝑛× 𝑛 are positive semidefinite and are within a convex (half) cone S𝑛

+ =
{M ∈ S𝑛|M ⪰ 0}, with S𝑛 := {M ∈ R𝑛×𝑛|M = MT} [21] . Positive semidefinite means
that all leading determinants are greater equal zero. Due to the symmetry property, we
abbreviate lower triangular elements by a {∙}.

A normally distributed multivariate variable is defined by a N-dimensional mean and
covariance matrix

x =
[︂

x𝑖

x𝑗

]︂
∼ 𝒩

(︁[︂x̂𝑖

x̂𝑗

]︂
,

[︂
Σ𝑖𝑖 Σ𝑖𝑗

Σ𝑗𝑖 Σ𝑗𝑗

]︂)︁
, (2.1)

1Please note that elements might not be commutative, such as rotations or poses.

14
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Σ𝑖𝑗 is denoted as the cross-covariance between the belief 𝑖 and belief 𝑗. The lower right
subscript of block matrices {∙}𝑖𝑗 = {∙}𝑖,𝑗 describe the corresponding indexing of the 𝑖th

row(s) and 𝑗th column(s).

Correlation matrices
Correlation matrices 𝒦 are elliptopes ℰ := {𝒦 ∈ S|𝒦 ⪰ 0, diag(𝒦) = I}, which are
symmetric positive semidefinite matrices where all the diagonal elements are unity [70].
The correlation of multivariate random variable x𝑎 ∼ 𝒩 (x𝑎,Σ𝑎𝑎), with Σ𝑎𝑎 = E[x𝑎xT

𝑎 ]−
E[x𝑎]E[x𝑎]T is defined as 𝒦𝑎𝑎 = E[x𝑎xT

𝑎 ].
The correlation coefficient 𝜌𝑖𝑗 between the random variables 𝑖 and 𝑗 (𝑖 ̸= 𝑗) of the

correlation matrix 𝒦 is defined as:

𝜌𝑖𝑗 =
𝜎𝑖𝑗

𝜎𝑖𝜎𝑗
=

𝜎𝑖𝑗√︁
𝜎2

𝑖 𝜎
2
𝑗

∈ [−1, 1] (2.2)

with the 𝜎𝑖,𝑗 as the standard deviation of 𝑖 and 𝑗 receptively and covariance between them
𝜎𝑖𝑗 = cov(𝑖, 𝑗) = 𝜎𝑖𝜌𝑖𝑗𝜎𝑗 . Thus, the structure of a correlation matrix 𝒦𝑎𝑎 is

𝒦𝑎𝑎 =

⎡⎢⎢⎢⎣
1 𝜌12 . . . 𝜌1𝑛

𝜌12 1 . . . 𝜌2𝑛
...

... . . . ...
𝜌1𝑛 . . . . . . 1

⎤⎥⎥⎥⎦ (2.3)

Skew symmetric matrices

A skew or cross product matrix of a vector a ∈ R3 is defined as

[a]× =

⎡⎣ 0 −𝑎𝑧 𝑎𝑦

𝑎𝑧 0 −𝑎𝑥

−𝑎𝑦 𝑎𝑥 0

⎤⎦ (2.4a)

[a]T× = [−a]× = − [a]× (2.4b)

The skew matrix is used when computing the cross product of two vectors a and b

a × b = [a]× b =

⎡⎣−𝑎𝑧𝑏𝑦 + 𝑎𝑦𝑏𝑧

𝑎𝑧𝑏𝑥 − 𝑎𝑥𝑏𝑧

−𝑎𝑦𝑏𝑥 + 𝑎𝑥𝑏𝑦

⎤⎦ . (2.4c)

Note that just as a × b = −b× a that

[a]× b = [−b]× a. (2.4d)

Additionally, the square of [a]× is

[a]2× = aaT − aTaI (2.4e)

2.2 Nomenclature

Centralized, Decentralized, Distributed
The conceptual differences between a centralized, decentralized, and distributed process-
ing architecture is depicted in Figure 2.1. In a centralized architecture, a single node is
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Figure 2.1: Shows the topological differences between a centralized, decentralized and
distributed processing network, while nodes held in non-blue colors, are performing compu-
tation. The processing effort is indicated by red, orange, yellow, representing high to low,
respectively.

processing data that is obtained by all nodes, meaning that a star-based communication
graph rooted at the central node is required. In a decentralized architecture, multiple
nodes can share the workload to process the information. A distributed architecture, dis-
tributes the workload among all nodes and potential data interdependencies might require
a denser communication mesh, in the worst case, a fully-meshed communication graph.
Distributed architectures tend to be more complex and require strategies to distribute and
handle information exchange, while at the same time, they tend to scale well, are resilient
to single point of failures, and allow distributing the payload between available nodes.

Agent
An agent can be something or someone with processing and communication capabilities
that is able to perform mission specific tasks, e.g., a ground robot, Unmanned Aerial Ve-
hicle (UAV), MAV, humanoid, Autonomous Underwater Vehicle (AUV), human equipped
with a sensor suite, autonomous vehicle, etc..

Swarm
We define swarm as a set A := {A𝑖|𝑖 = 1, . . . , 𝑁} of agents A with communication and
processing capabilities in a wireless network. Each agent is associated with a unique iden-
tifier (ID), idA , allowing us the following notation A𝑖 = A

(︀
idA𝑖

)︀
. The swarm consists of

𝑁 = |A| agents (|∙| is the cardinality of a set).
A set of met agents M𝑖 refers to the experience of an individual agent A𝑖 and is defined

as M𝑖 :=
{︀

M𝑗 |𝑗 = 1, . . . ,𝑀𝑖

}︀
.

Sliding history container
A sliding history container Hist is a smart cyclic (memory) buffer that allows to hold ele-
ments within a certain time span. Elements are inserted chronologically ascending sorted
(like a FIFO that is considering the timestamp rather than the actual order). The time
span is referred from most recent to the oldest element, once elements exceed the time-
horizon they are removed automatically. Each entry is a tuple < 𝑡𝑘, ∙𝑘 > of the associated
timestamp and the actual element, e.g., ℋ := Hist{x𝑘}. Elements are inserted chronologi-
cally sorted into the buffer by Hist(𝑡𝑘) = ∙𝑘 and accessed by ∙𝑘 = Hist(𝑡𝑘).
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Dictionary container
A dictionary container – a so-called hashed-map– Dict, is (memory) buffer that is indexed
via a unique identifier, meaning that it maintains a set of indices and a set of elements (a
set of tuples < id, ∙ >), e.g, ℳ := Dict{v}. Elements are inserted into the dictionary by
Dict(id) = ∙𝑘 and accessed by ∙𝑘 = Dict(id). A list l of unique identifiers is obtained by
l = Dict→ keys()

Real-time capability
Regarding real-time capability, we can distinguish between hard and soft real-time. De-
pending on which type is needed and if the condition/deadline (the time instant at which
the data should be process is called deadline) are met, the system is real-time capable. Soft
real-time, means that no catastrophic failure modes are issued if the time constraint is not
met, and that results are still valid/usable after the deadline. Hard real-time is required
when the deadline is firm and critical state can be reached by missing the deadline. A hard
real-time system must therefore provide guarantees on the temporal behaviors under all
possible conditions [82].

2.3 Spatial Geometry

In Collaborative Localization (CL), the ability to communicate and the measure quantities
of the spatial relations between robots/agent is exploited to improve the localization.
Therefore, a neat notation for expressing spatial relations is required to avoid ambiguities.

2.3.1 Representing Poses
In general, a pose describe the position (or translation) between the origins of two frames
of reference, and the orientation between the orthogonal axes of the coordinate reference
frames. Poses are elements of the Special Euclidean group 𝑆𝐸(𝑁) of dimension 𝑁 ,

In 3D space, a pose T ∈ 𝑆𝐸(3) between the reference frames {𝒜} and {ℬ} (distance
𝒜
𝒜pℬ and orientation 𝒜Rℬ) is realized as a so-called homogeneous transformation matrix,
forming a matrix Lie group, in the form of

𝒜Tℬ ∈ SE(3) :=
{︃[︃

𝒜Rℬ
𝒜
𝒜pℬ

0T 1

]︃ ⃒⃒⃒⃒
⃒ R ∈ 𝑆𝑂(3),p ∈ R3

}︃
. (2.5)

We use (T){𝑥,𝑦,𝑧,p,R} and (p){𝑥,𝑦,𝑧} to access the corresponding elements, e.g, 𝒜Rℬ =(︁
𝒜Tℬ

)︁
R
.

The composition of a homogeneous transformation matrices is 𝒜T𝒞 = 𝒜Tℬ
ℬT𝒞 and

the transformation of a coordinate vector 𝒞
𝒞p𝑃1

pointing from the origin of the reference
frame 𝒞 to a point 𝑃1, expressed in {𝒞}, can be transformed into the frame {𝒜} by the
homogeneous vector representation[︂𝒜

𝒜p𝑃1
1

]︂
= 𝒜T𝒞

[︂𝒞
𝒞p𝑃1

1

]︂
. (2.6)

The inverse of a homogeneous transformation matrix 𝒜T−1
ℬ is

𝒜T−1
ℬ =

[︃
𝒜RT

ℬ −𝒜RT
ℬ

𝒜
𝒜pℬ

0T 1

]︃
∈ SE(3) (2.7)



2. Fundamentals 18

Figure 2.2: Referencing scheme: A point 𝑃1 expressed in the reference frame {𝒜} can be
expressed in the reference frame {ℬ} by applying the homogeneous transformation matrix
ℬT𝒜.

Figure 2.3: Referencing scheme: Three points {𝑃1, 𝑃2, 𝑃3} on a rigid body expressed in the
reference frame {𝒜} are combined/concatenated to express a sum between the origin of {𝒜}
and the point 𝑃3.

The reference scheme for vectors is read as
from

in{∙} to, (2.8)

where in is the reference frame the element is expressed in, from is the tail of the vector,
and to is the tip of the vector. An example is shown in Figure 2.2.

At this point, one can argue that the in specifier is superfluous, but that the tail of
a vector is not necessary in the origin of the reference frame it is expressed in, e.g., the
tail could be located in a different reference frame or another point of the rigid body
configuration, as shown in Figure 2.3. The direction of a vector is changed by negating the
sign

𝑃1
𝒜 p𝒜 = (−1)𝒜

𝒜p𝑃1
. (2.9)

The referencing scheme for orientations and poses allows mitigating the in specifier as
they always refer to the origin of their coordinate reference frame, as shown in Figure 2.2,

from{∙} to. (2.10)
The time index (at) is located at the right superscript

from
in{∙}

at
to. (2.11)

Alternatively, the time index can be added to the right superscript of the reference
frame, e.g., the point 𝒫1 expressed in the reference frame {𝒜} at time 𝑡(𝑘) can be expressed
as

𝒜
𝒜p𝑘

𝑃1
= 𝒜

𝒜p
𝑃

𝑘
1
, (2.12)
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Figure 2.4: Rotation of a vector p, by an angle 𝜑, around the axis u.

and simplifies the notation to express spatial-temporal relations between reference frames.

2.3.2 Representing Rotations
The attitude of an Inertial Navigation System (INS) in 3D space can be represented in
various ways. Prominent realization are rotations matrices – matrix Lie group – of the
special orthogonal group 𝑆𝑂(3) or as unit quaternions as elements of the Hamiltonian
space H with unit length. There are other representations such as Axis-Angle, and Euler-
angles.

In this subsection, we briefly review these representations and their properties, in order
to avoid ambiguities in definitions, derivations, and evaluations performed in the thesis.
Generally, rotations are not commutative, meaning the order and sequence of consecutive
rotations matters.

Axis–Angle Rotation

The Axis–angle representation describes a rotation in the 3D space about the axis of a
unit vector u =

[︀
𝑢𝑥;𝑢𝑦;𝑢𝑧

]︀
with ‖u‖ = 1, through the origin by an angle of 𝜑, as shown

in Figure 2.4. This representation plays a major role as distance metric, as a meta param-
eterization in the conversion between different other representation, and is the Cartesian
vector representation 𝜑 = 𝜑u ∈ R3 of the Lie algebra [𝜑]× ∈ so(3). For a constant an-
gular velocity 𝜔 it can be used to obtain the integrated rotation in the axis angle form
𝜑 = 𝜔𝑡 [137]. Note that 𝜑 = 𝜑

‖𝜑‖ and u = 𝜑
𝜑 , satisfying ‖u‖ = 1.

This parameterization suffers from a lacking composition operator, meaning that a
sequence of rotation cannot be computed easily, as the group axiom is not satisfied (please
refer to [137])

Euler-Angles

The Euler’s rotation theorem, states that any orientation of a rigid body with respect to a
fixed three-dimensional Cartesian coordinate system can be presented with three proper
elemental rotations actions about different axis [26], e.g.,

R = R𝑧𝑦𝑥(𝜓, 𝜃, 𝜑) = R𝑧(𝜓)R𝑦(𝜃)R𝑥(𝜑) ∈ 𝑆𝑂(3), (2.13)

about the x-, y-, and z-axis2 with

R𝑥(𝜑) =

⎛⎝1 0 0
0 cos𝜑 − sin𝜑
0 sin𝜑 cos𝜑

⎞⎠, (2.14a)

2Note that a vector p is transformed by the right most matrix first, in this case R𝑥, p′ =
R𝑧(𝜓)R𝑦(𝜃)R𝑥(𝜑)p
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R𝑦(𝜃) =

⎛⎝ cos 𝜃 0 sin 𝜃
0 1 0

− sin 𝜃 0 cos 𝜃

⎞⎠, (2.14b)

R𝑧(𝜓) =

⎛⎝cos𝜓 − sin𝜓 0
sin𝜓 cos𝜓 0

0 0 1

⎞⎠. (2.14c)

In total twelve possible sequences of rotation about the axes exist to a achieve a
dedicated rotation, which are divided into two groups the Eulerian and the Cardanian3

angles [26]:
• Eulerian angles {z-x-z, x-y-x, y-z-y, z-y-z, x-z-x, y-x-y} (2 distinct axes),
• Cardanian angles {x-y-z, y-z-x, z-x-y, x-z-y, z-y-x, y-x-z} (3 distinct axes).

This means, that each representation leads to different rotation matrices and special care
needs to be taken if existing third-party source code is used. Representing a system state
in terms Euler angles can lead, in case of a so-called Gimbal lock, to a loss of a degree of
freedom in the orientation, meaning that changes in two parameters effect in a rotation
about the same axis. For example, if the state of the pitch is 𝛽 = 𝜋

2 , then modifying either
the roll or yaw angle results in a rotation about the z-axis.

Like the axis-angle representation, Euler-angles are lacking of a proper composition
operator, meaning that the composition of angles about more than one axis does not
relate to physical rotation of applying the individual rotations sequentially.

Finally, the inverse of a rotation matrix to Euler-angles does not provide a unique
solution and the visualization of continues or error angles needs to mitigate the effect of
discontinuities due to overflows (𝜑 = 𝜑+ 2𝑁𝜋)

Due to their intuitive way of representing rotations, we use Euler angles for visualizing
the estimation performance in 2D plots, but they should be avoided as error metric,
see Section 2.6. Throughout the thesis, we use the Cardanian angles following the z-y-x
sequence.

Unit Quaternions

Unit quaternions are a commonly used representation for 3D rotations in robotics and,
in our case, to estimate the attitude of the INS. A quaternions is described by four
parameters, a real scalar 𝑞𝑤 and three scalars q𝑣 = [𝑞𝑥; 𝑞𝑦; 𝑞𝑧] for the imaginary parts [136]

q = 𝑞𝑤 + 𝑞𝑥𝑖+ 𝑞𝑦𝑗 + 𝑞𝑧𝑘 = 𝑞𝑤 + q𝑣 =
[︂
𝑞𝑤

q𝑣

]︂
=

⎡⎢⎢⎣
𝑞𝑤

𝑞𝑥

𝑞𝑦

𝑞𝑧

⎤⎥⎥⎦ ∈ H. (2.15a)

The Hamiltonian product (with the ⊗ operator) of two quaternions {p,q} ∈ H is defined
as

p⊗ q =
[︂

𝑝𝑤𝑞𝑤 − pT
𝑣 q𝑣

𝑝𝑤q𝑣 + 𝑞𝑤p𝑣 + p𝑣 [q𝑣]×

]︂
, (2.15b)

which is not commutative
p⊗ q ̸= q ⊗ p, (2.15c)

but associative
(p⊗ q)⊗ r = p⊗ (q ⊗ r). (2.15d)

3Which are also known as Tait-Brayan angles
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The identity quaternion is

qI =
[︂

1
0

]︂
, (2.15e)

the conjugate is defined by the symbol {∙}* as

q* =
[︂
𝑞𝑤

−q𝑣

]︂
, (2.15f)

and has – similar to the matrix transpose –, the following property

(p⊗ q)* = q* ⊗ p*. (2.15g)

Unit quaternions satisfy the unit length

q̄ ∈ {q̄ ∈ H| ‖q̄‖ = 1}, (2.15h)

with
‖q‖ =

√︁
q ⊗ q* =

√︁
𝑞2

𝑤 + 𝑞2
𝑥 + 𝑞2

𝑦 + 𝑞2
𝑧 ∈ R. (2.15i)

The inverse of a unit quaternion is its conjugate [136].

q̄−1 = q̄*. (2.15j)

Since unit quaternions constitutes a double cover of 𝑆𝑂(3),

q̄ =
[︂
𝑞𝑤

−q𝑣

]︂
=
[︂
−𝑞𝑤

−q𝑣

]︂
, (2.15k)

they are element of a hyper-sphere q̄ =∈ 𝑆3. A unit-quaternion can be obtained from the
axis-angle representation by

q̄(u, 𝜑) =
[︂

cos(𝜑/2)
u sin(𝜑/2)

]︂
, ‖u‖ = 1. (2.15l)

The composition of quaternions is computationally more efficient compared to rotation
matrices. Rotation matrices consist of nine parameters meaning that a matrix multipli-
cation requires 9 × 3 multiplications and 9 × 2 additions. Quaternions consist of four
parameters, while a multiplication requires 4 × 4 scalar multiplications and 4 × 3 scalar
additions.

There are two different quaternion definitions, the Hamiltonian and JPL/Shuster
quaternions [139], requiring to interpret the 4 parameters differently. Further, a different
multiplication operator and mapping operator between quaternions and rotation matri-
ces are needed. Since most software libraries and frameworks (Eigen4, ROS5, MATLAB6)
are using Hamilton quaternions, special care needs to be taken if state values of JPL-
frameworks are used directly, since a conversion needs to done.

Rotation Matrix

A rotation matrix R ∈ 𝑆𝑂(3) := {R ∈ R3|R
TR = I, det (R) = 1} belongs to the special

orthogonal group of order three. Consequently, a rotation matrix fulfills the following two
conditions:

4https://eigen.tuxfamily.org/
5https://www.ros.org/
6https://de.mathworks.com/

https://eigen.tuxfamily.org/
https://www.ros.org/
https://de.mathworks.com/
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• special: det (R) = +1 (to avoid mirror images),
• orthogonal: I = RRT = RTR.

The column vectors in rotation matrices have an intuitive underlying geometric interpre-
tation. Given an Euclidean vector ℬ

ℬp𝑃1
in the reference frame ℬ pointing from the origin

to a point 𝑃1, can be decomposed into vectors along the orthogonal axes ℬ
ℬe{𝑥,𝑦,𝑧} with

unit length
ℬ
ℬp𝑃1

= ℬ
ℬe𝑥𝑥+ ℬ

ℬe𝑦𝑦 + ℬ
ℬe𝑧𝑧,

⃦⃦⃦
ℬ
ℬp𝑃1

⃦⃦⃦
=
√︁
𝑥2 + 𝑦2 + 𝑧2. (2.16)

Given a rotation matrix 𝒜Rℬ, describing the orientation between a reference frame 𝒜
and ℬ, then the columns are in the form

ARB =
[︁

ℬ
𝒜e𝑥

ℬ
𝒜e𝑦

ℬ
𝒜e𝑧,

]︁
(2.17)

with the orthogonal axes 𝒜
ℬ e{𝑥,𝑦,𝑧} of the frame ℬ expressed in the reference frame 𝒜. This

allows to express the point 𝑃1 w.r.t. to the reference frame 𝒜 by ℬ
𝒜p𝑃1

= 𝒜Rℬ
ℬ
ℬp𝑃1

, which
is equivalent to rotating/transforming the bases

ℬ
𝒜p𝑃1

= 𝒜Rℬℬe𝑥𝑥+ 𝒜Rℬℬe𝑥𝑦 + 𝒜Rℬe𝑥𝑧, (2.18)

We must ensure that the transformed model/vector does not become distorted, which
is achieved by ensuring that a rotation matrix satisfies the following criteria [85]:

• No stretching of axes: The norm of the columns must have the unit length.
• No shearing: The inner (dot) product is zero.
• No mirror image: The determinant must be positive.

Further properties of rotation matrices are:
• The transformation does not change the amplitude of the vector: ‖Ra‖ = ‖a‖
• The inner product, and then the angle between two vectors, is invariant with respect

to rotations: aTb = (Ra)T(Rb)
• Since R is an orthogonal matrix, the following property holds: R(a × b) = (Ra)×

(Rb)
• The product of rotation matrices does not commute: R𝑎R𝑏 ̸= R𝑏R𝑎

• Negating the angle about the rotation axis is equal to the inverse of the corresponding
rotation matrix: R(u,−𝜑) = R(u, 𝜑)T

• Double representation R(u, 𝜑) = R(−u, 2𝜋 − 𝜑)
• Two consecutive rotations about the rotation axis is equal to a product of two rota-

tions: R(u, 𝜑1 + 𝜑2) = R𝜑2
R𝜑1

Manipulating rotation matrices in numerical implementations, will not preserve this
structure, e.g., the determinant of the numerical solutions is not equal to one. A common
solution is to project the ordinary matrix back onto the manifold. This projection is in case
of rotation matrices more complex (e.g.,based on a singular value decomposition) than for
unit quaternions – which can be achieved by the quaternion normalization) – and gives
no guarantee that the projected result is physically meaningful.

2.4 Estimation Error definitions

2.4.1 Error types
In this thesis, we study CSE primarily on a widely used indirect or error-state formulation
of a Kalman filter, meaning that the definition of the estimation error plays a crucial
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role in the state correction and the linearization of the underlying nonlinear functions. In
this section, we will show that different choices can be made and that it is important to
explicitly state which error definitions was chosen.

For Lie Groups, the following group axioms need to be fulfilled: closure under com-
position (�), identity, inverse, and associativity [137]. Lie Groups 𝒢 are most likely not
commutative (e.g., the rotation matrix realization of 𝑆𝑂(3)), thus the order of compositing
matters. Having two elements of a group, the error/perturbation ∼ and the estimate ∧,
and a composition operator (�), naturally two compositions arise to define the true value
⊤:

𝒢 type-1 error : ⊤ = ∧� ∼1 (local pertubations) (2.19)
𝒢 type-2 error : ⊤ =∼2 � ∧ (global pertubations) (2.20)

One can distinguish between local and global perturbations, depending on where the
error is located, as shown in Figure 2.5. A global perturbations is in the origin or global
frame, while the local error is located in the origin of the local/body frame. This interpre-
tation stem from transforming vectors, e.g., 𝒢

𝒢p𝑃1
= 𝒢Rℒ

ℒ
ℒp𝑃1

, assuming in this example,
that the origins of {𝒢} and {ℒ} are in the same place.

Figure 2.5: Two paths on a manifold ℳ to join the origin {𝒢} with the element {ℒ}.
Both compose an element 𝒳 = 𝒢𝒳ℒ′ = 𝒢′

𝒳ℒ with increments 𝒢𝒳 = 𝒢𝒳𝒢′ and ℒ′𝒳 = ℒ′

𝒳ℒ,
expressed either in and the local frame {ℒ′} or in the origin {𝒢}. Due to non-cummutativity
the elements 𝒢𝒳 and ℒ′𝒳 are not equal. Figure is inspired by Solà et al. [137].

From vector algebra, one is used to have a + and − operator, which can be interpreted
as ⊤ = ∧� ∼= ∧� (∼)−1, meaning that the minus operator � is the composition with the
inverse of an element. By considering all possible paths, eight different error definitions
can be found, as shown in Figure 2.6, while four definitions – with the estimate in the
opposite direction of the path – are rather counterintuitive. This figure reveals that four
invariant error definitions (with the estimate in the direction of the forward) exist, despite
in literature on invariant Kalman filtering, only one left- and right invariant error definition
is mentioned, and the filter formulation is defined according to them, see e.g., [11, 55].

This also allows introducing eight error definitions (four parameters and non-commutative
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Figure 2.6: All possible paths on a manifoldℳ to join the origin {𝒢} with an element {ℒ},
by composing an element 𝒳 with an increment 𝒳 . Having estimates in the forward path (
𝒳 held in blue), the increments or errors are either left- or right invariant, held in magenta
and orange respectively. Defining estimates in the opposite direction (𝒳 held in cyan) does
not lead to invariant errors, thus, in total, four invariant error definitions are possible on Lie
groups.

compositions)

𝒢 type-3 error : ⊤ = ∧� ∼3= ∧� ∼−1
3 (2.21)

𝒢 type-4 error : ⊤ = � ∼4 �∧ =∼−1
4 �∧ (2.22)

𝒢 type-5 error : ⊤ = � ∧� ∼5= ∧−1� ∼5 (2.23)
𝒢 type-6 error : ⊤ =∼6 �∧ =∼6 �∧

−1 (2.24)
𝒢 type-7 error : ⊤ = � ∧� ∼7= ∧−1� ∼−1

7 (2.25)
𝒢 type-8 error : ⊤ = � ∼8 �∧ =∼−1

8 �∧
−1 (2.26)

Please note that the error types ∼5 to ∼8 based on the reverse path of the estimate are
counterintuitive with respect to real estimation problems, e.g., estimating the pose of an
object in space, and is thus not further considered.

As shown in Figure 2.6, and four invariant error types for Lie groups 𝒢 exist

𝒢 type-1 error : ∼1 = ∧−1 �⊤ = (L∧)−1 � (L⊤) (left invariant) (2.27)
𝒢 type-2 error : ∼2 = ⊤� ∧−1 = (⊤R)� (∧R)−1 (right invariant) (2.28)
𝒢 type-3 error : ∼3 = ⊤−1 � ∧ = (L⊤)−1 � (L∧) (left invariant) (2.29)
𝒢 type-4 error : ∼4 = ∧�⊤−1 = (∧R)� (⊤R)−1 (right invariant) (2.30)

with L and R as elements of the group 𝒢. An error classified as left or right invariant, if an
arbitrary element ´of the group 𝒢 can be multiplied left or right on both the estimate ∧
and true ⊤, without changing the error ∼. For instance, assuming {∧,⊤,L} being elements
of a matrix Lie group

∼1 = (L∧)−1(L⊤) = (∧−1L−1)(L⊤) = ∧−1⊤. (2.31)

There are two left- and right invariant errors, whereas in literature regarding invariant
Kalman filtering, e.g., Barrau and Bonnabel in [11], Hartley et al. in [55], and Yang et
al. [157], only the left ∼2 and right invariant error ∼4 were defined. Later in [12], Barrau
and Bonnabel defined the left invariant ∼1 and right invariant ∼2 error.

In the vector space R𝑁 , which is commutative (−𝑎 + 𝑏 = 𝑏 − 𝑎), the composition
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operator is + and allows defining the following error types

R𝑁 type-1 error : ∼1 = − ∧+⊤ = ⊤− ∧ (2.32)

R𝑁 type-2 error : ∼2 = ⊤+ (−∧) = ⊤− ∧ =∼1 (2.33)

R𝑁 type-3 error : ∼3 = (−⊤) + ∧ = ∧ −⊤ (2.34)

R𝑁 type-4 error : ∼4 = ∧+ (−⊤) = ∧ −⊤ =∼3 (2.35)

Meaning that the four invariant error types from a general Lie Group 𝒢, reduced to two
error types in vector space R𝑁 .

2.4.2 Pose error definitions

In this section we define the invariant error definition of a 6-DoF pose 𝒢Tℒ ∈ 𝑆𝐸(3)

𝑆𝐸(3) type-1 error : ℒ′
T̃ℒ = 𝒢T̂−1

ℒ′ � 𝒢Tℒ (left invariant) (2.36)

𝑆𝐸(3) type-2 error : 𝒢T̃𝒢′ = 𝒢Tℒ �
𝒢′

T̂−1
ℒ = (right invariant) (2.37)

𝑆𝐸(3) type-3 error : ℒT̃ℒ′ = 𝒢T−1
ℒ �

𝒢T̂ℒ′ = (left invariant) (2.38)

𝑆𝐸(3) type-4 error : 𝒢′
T̃𝒢 = 𝒢′

T̂ℒ �
𝒢T−1

ℒ = (right invariant) (2.39)

2.5 Distance Metrics
In order to measure an error, we need to measure a distance between the true and estimated
value. Note, as already mentioned in Section 2.4, there many ways to define an error,
especially if values are not commutative.

2.5.1 Euclidean distance

In the Euclidean space, a bi-invariant metric is the 𝑙2-norm of the difference between two
vectors

𝑑𝐸(p1,p2) = ‖p1 − p2‖2 , (2.40)
or

𝑑𝐸(p̃) = ‖p̃‖2 (2.41)

2.5.2 Angle distance
Various metrics to determine a difference/distance between two 3D rotations exist [68]. In
2D on elements of 𝑆(1), the unit circle, the difference between rotations is the absolute
value between two angles in radians. Naively in 3D space, one might think the metric
on 𝑆(1) can be applied on the in individual axis using the Euler-Angle representation of
two 3D rotations. First, the Euler angle representations do not satisfy the group axioms.
Second, this would lead to three values that need to be weighted in some way.

The absolute difference between 3D rotations, {R1,R2} ∈ 𝑆𝑂(3) corresponds to the
angle 𝜑 from the axis-angle representation as a bi-invariant metric [159] in the form

𝑑R = 𝑑R(R1,R2) = 𝜑 = cos−1
(︃

tr(R2
TR1)− 1
2

)︃
, (2.42)

or
𝑑R(R̃) = cos−1

(︂
tr(R̃)− 1

2

)︂
, (2.43)

where R−1 = RT and describes the length of the geodesic on the unit sphere in radians.
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2.5.3 Mahalanobis distance
Mahalanobis introduced in [98], a metric to measure a distance between a sample point
p and a Gaussian normal distribution x ∼ 𝒩 (x̂,Σ). The Mahalanobis distance allows
determining how many standard deviations the given point p is away from the expected
mean value of the distribution x̂ and is, thus, unit less and scale invariant

𝑑𝑀 = 𝑑𝑀 (p,x) = 𝑑𝑀 (p, x̂,Σ) =
√︁

(p− x̂)TΣ−1(p− x̂) = ‖p− x̂‖Σ . (2.44)

Since Σ is positive semidefinite, the inverse is always defined.

2.6 Estimation Error Metrics

To determine the (estimation) error, we use according to the parameter space an appropri-
ate measure for distance Section 2.5 between an estimated and the actual (true) value. For
elements in Euclidean space R3 we use the Euclidean distance and for elements describing
rotations we use the angle or Euler-angles.

2.6.1 Root Mean Square Error (RMSE)
The RMSE at every time step 𝑘 of given a set of 𝑀 estimated trajectories and the true
trajectory can be computed given an error-definition 𝑒 or distance metric 𝑑 as follows

𝑒𝑘
RMSE =

⎯⎸⎸⎷ 1
𝑀

𝑀∑︁
𝑖=1

⃦⃦⃦
𝑒(x𝑘

𝑖 , x̂
𝑘
𝑖 )
⃦⃦⃦2

2
=

⎯⎸⎸⎷ 1
𝑀

𝑀∑︁
𝑖=1

𝑑(x𝑘
𝑖 , x̂

𝑘
𝑖 )2. (2.45)

The average RMSE, the ARMSE, of a single run over the entire duration of a trajectory
with 𝐾 steps is defined as

𝑒ARMSE = 1
𝐾

𝐾∑︁
𝑘=1

𝑒𝑘
RMSE. (2.46)

2.6.2 Normalized Innovation Squared (NIS)
The NIS hypothesis check (also known as gating test) is used to detect measurement
outliers based on the analysis of the innovation/residual r and the innovation covariance
in Equation (2.65b) [50]

S = HΣHT + R.

A Kalman filter, assumes that the residual has a (multivariate) zero-mean Gaussian dis-
tribution of dimension 𝑛 = dim(r), i.e., the innovations are independent of each other
and thus the sequence is zero-mean and white [10]. Therefore, the actual residual must
fall into the estimated uncertainty S, if the system is modeled correctly and the estimates
are consistent. Similar to the NEES, we compute the squared Mahalanobis distance 𝑠
using Equation (2.44), between the residual r and the innovation belief with zero mean
𝒮 ∼ 𝒩 (0,S), in the form

𝑠 = rTS−1r = ‖r‖2S ∈ [0,∞], (2.47)

as a measure of how many squared standard deviations the residual is away from the
expect mean of 0.

The aim is to evaluate, if the innovation falls within a certain population of the distri-
bution, e.g., 𝑝 = 0.997 or 99.7% (meaning that the point lies within an interval of 99.7%
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of values closest to the mean of the normal distribution). Consequently, the lower the
𝑝 value, the stricter is the criteria to accept a measurement. The summed squares of 𝑛
independent univariate Gaussian variables is known to be 𝜒2

𝑛-distributed with 𝑛 degrees
of freedom and is related to the innovation belief 𝒮 by [26]

𝑠 = 𝜒2
𝑛(𝑝), 𝑝 ∈ [0, 1]. (2.48)

From the inverse of the chi-square cumulative distribution of the residual’s dimension
and the desired 𝑝 value, we obtain the reference value for the hypothesis/significance check

outlier = 𝑠 ≥ 𝜒2
𝑛(𝑝). (2.49)

Compared to the aforementioned estimation error metrics, this metric requires no
ground truth information and can always be calculated from the existing parameters in
the Kalman filter update step (see Section 2.8.1), but relies on consistent estimates.

2.6.3 Normalized Estimation Error Squared (NEES)
The NEES is the squared Mahalanobis distance (see Section 2.5.3) of the estimated and
true value at every timestep 𝑘 of the trajectory and is, thus, a unit less scalar. It measures
how many squared standard deviations the true values is away from the expected mean
value of the state’s distribution X ∼ 𝒩

(︁
x̂𝑘

𝑖 ,Σ
𝑘
𝑖

)︁
𝑒𝑘

NEES = 𝑑𝑀

(︁
x𝑘

𝑖 , x̂
𝑘
𝑖 ,Σ

𝑘
𝑖

)︁2
= 𝑒

(︁
x𝑘

𝑖 , x̂
𝑘
𝑖

)︁T
Σ𝑘,−1

𝑖 𝑒
(︁

x𝑘
𝑖 , x̂

𝑘
𝑖

)︁
=
⃦⃦⃦
𝑒
(︁

x𝑘
𝑖 , x̂

𝑘
𝑖

)︁⃦⃦⃦2

Σ𝑘
𝑖

, (2.50)

with, for instance, an error definition 𝑒
(︁

x𝑘
𝑖 , x̂

𝑘
𝑖

)︁
= x𝑘

𝑖 − x̂𝑘
𝑖 , which depends on the estima-

tor’s error definition, e.g., where the error is defined (globally or locally) and which error
representation was used, e.g., the small angle approximation for estimated orientations.
The NEES is assumed to be 𝜒2

𝑛 distributed with 𝑛 DoF and a mean value of 𝑛, where 𝑛
is the dimension of the error, and can be used for hypothesis checks. NEES values below
and above 𝑛 indicate under- and over-confidence, respectively.

Our filter is based on an indirect formulation (see Section 2.8.6), meaning that the
uncertainty of the error-state is estimated. Both, position and orientation errors are defined
to be in the local frame with 𝒜

𝒜pℬ = 𝒜
𝒜p̂ℬ+𝒜R̂ℬ

𝒜
𝒜p̃ℬ and 𝒜Rℬ = 𝒜R̂ℬ

𝒜R̃ℬ with 𝒜R̃ℬ ≈ I+[︁
𝒜�̃�ℬ

]︁
×

. Consequently, the uncertainties/covariances of positions and orientation estimates
are expressed in these spaces and the error definition 𝑒(x, x̂) needs to be considered in the
NEES calculation for each particular state.

The NEES for the local position error-state is obtained by

𝑒𝑘
NEES,p̃ =

(︁
𝒜R̂T

ℬ(𝒜
𝒜pℬ −

𝒜
𝒜p̂ℬ)

)︁T
Σ𝑘

𝑖,p̃
−1 (︁𝒜R̂T

ℬ(𝒜
𝒜pℬ −

𝒜
𝒜p̂ℬ)

)︁
. (2.51)

The NEES for the local orientation error-state is obtained by

𝑒𝑘
NEES,𝜃 =

(︂(︁
I− 𝒜R̂T

ℬ
𝒜Rℬ

)︁∨
)︂T

Σ𝑘
𝑖,𝜃

−1 (︁
I− 𝒜R̂T

ℬ
𝒜Rℬ

)︁∨
. (2.52)

The average (mean) NEES over a single trajectory7, is denoted as NEES

𝑒NEES = 1
𝐾

𝐾∑︁
𝑘=0

𝑒𝑘
NEES. (2.53)

7In OpenVINS [46], the NEES computed over a single trajectory is denoted as single run NEES.
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Despite providing useful insights, a single run NEES does not adequately measure the
filter consistency and a thorough examination is needed by evaluating the single run NEES
over (multiple) 𝑀 Monte Carlo simulation runs, leading to an average NEES, the ANEES
at the time instance 𝑡𝑘

𝑒𝑘
ANEES = 1

𝑀

𝑀∑︁
𝑖=1

𝑒𝑘
NEES,𝑖. (2.54)

Assuming a zero mean estimation error x̃ ∼ 𝒩 (0,Σ) with x̃𝑘 = x𝑘 � x̂𝑘, the 𝑒ANEES
should have a chi-squared distribution 𝜒2

𝑛 of dimension 𝑛 = dim(x̃). Therefore, the NEES
should be on average 𝑛. This allows to assess the credibility by defining a lower and upper
boundary, 𝑟1, 𝑟2, for the observed 𝑒ANEES. In general, lower values indicate pessimism
(under-confidence), while higher ones optimism. The boundaries of a commonly used two-
sided 95 % confidence regions (𝛼 = 0.05) is computed using the inverse of the chi-square
cumulative distribution 𝜒2

𝑛𝑀 , defined as

[𝑟1, 𝑟2] =
[︃
𝜒2

𝑛𝑀 (0.5𝛼)
𝑀

,
𝜒2

𝑛𝑀 (1− 0.5𝛼)
𝑀

]︃
, (2.55)

with the state dimension 𝑛,𝑀 Monte-Carlo runs, and the chi-squared distribution 𝜒2
𝑛𝑀 [10].

For 𝑀 = 10 and 𝑛 = 3, e.g., the IMU position, the lower and upper credibility bounds for
the ANEES in the 95 % region are [1.68, 4.7].

Remark 1 In contrast to a single run NEES, an ANEES evaluation can only be performed
in simulation, based on multiple Monte-Carlo runs on a single reference/true trajectory,
with different initial conditions for the initial state x0 drawn as sample from the initial
distribution of the state x0 ∼ 𝒩

(︁
x̂0,Σ0

)︁
, and the same set of measurements, but with

randomly generated measurement noise for each individual run. Typically, these require-
ments cannot be met in robotics by repeating an experiment 𝑀 times, e.g., by following
predefined set of waypoints multiple times.

2.7 Estimated Trajectory Evaluation
The evaluation of error metrics is typically an offline process, that requires an estimated-
and the actual (true) trajectory. A trajectory is not necessarily a 3D path in space time,
rather a set/sequence of timestamped states. Apart from simulations, it is typically not
possible or hard to obtain the true values of a dynamical system. In robotics, motion
capture systems became standard to obtain highly accurate pose (position and orientation)
measurement of a tracked device at high rates and allows evaluating the quality of the pose
estimates of real robots. Several tools to quantify the accuracy of the estimated trajectory
(pose) of SLAM or VIO systems by computing the ATE or Relative Pose Error (RPE)
have been published, e.g., by Sturm et al. [141] Zhang and Scaramuzza [159], and Geneva
et al. [46].

Apart from the absolute and relative pose trajectory errors, the consistency of pose
estimates based on the estimated uncertainty is an indispensable metric for a reliable
and credible localization. For instance, if different sources of information are fused or
statistical outlier rejection methods are applied (see Section 2.6.2). This was one of the
primary motivations of our open-sourced statistical evaluation toolbox8 in our VINSEval
framework9. The framework was proposed by Fornasier et al. in [40] and introduces a

8https://github.com/aau-cns/cnspy_trajectory_evaluation
9https://github.com/aau-cns/vins_eval

https://github.com/aau-cns/cnspy_trajectory_evaluation
https://github.com/aau-cns/vins_eval
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credibility measures based on the NEES (see Section 2.6.3) for VINS algorithms building
upon the open-source trajectory evaluation framework10 published in [159].

Before error metrics can be computed, an association between the estimated and ref-
erence data points need to be established, as these sequences typically have different sam-
ple rates, might suffer from missing data, and different number of samples/length [141].
Missing true and estimated values can be approximated by interpolation, such that both
sequences have the same amount of samples. Alternatively, associations between the times-
tamps of the estimated and reference trajectory can be found with a certain tolerance,
which might reduce the total number sample points after the association.

2.7.1 Absolute Trajectory Error (ATE)
The ATE is a measure for the global consistency of the estimated trajectory and is ob-
tained by averaging the distances (Euclidean and angular distance) between the true and
estimated (pose) trajectory [141].

The pose trajectory evaluation also requires some preliminary information about the
system and configuration. For instance, if the state space would generally be observable
or not, or if the system was initialized at the true value or randomly. As discussed later in
details, in a IMU/camera configuration the absolute position and rotation about a known
gravity vector cannot be recovered. Meaning that this sensor constellation only allows
to infer relative information, which might result, when directly compared to the true
trajectory, in huge errors. Therefore, trajectory alignment strategies should be applied
before computing the ATE.

After the data association and timestamp alignment was performed, the ATE is com-
puted as the RMSE of the position- and orientation error over an estimated trajectory 𝑚
of 𝑀 (Monte-Carlo simulation) runs with respect to one true trajectory. The ATE for the
position is computed using Equation (2.40) as

𝑒𝑚
ATE,p =

⎯⎸⎸⎷ 1
𝐾

𝐾∑︁
𝑘=1

𝑑𝐸

(︁
𝒢
𝒢p𝑘

ℬ,
𝒢
𝒢p̂𝑘,𝑚

ℬ

)︁
, (2.56)

and for the orientation using Equation (2.42) as

𝑒𝑚
ATE,R =

⎯⎸⎸⎷ 1
𝐾

𝐾∑︁
𝑘=1

𝑑𝑅

(︁
𝒢R𝑘

ℬ,
𝒢R̂𝑘,𝑚

ℬ

)︁
. (2.57)

The average over 𝑀 runs is obtained by

𝑒ATE,p = 1
𝑀

𝑀∑︁
𝑚=1

𝑒𝑚
ATE,p (2.58)

and

𝑒ATE,R = 1
𝑀

𝑀∑︁
𝑚=1

𝑒𝑚
ATE,R (2.59)

2.7.2 Credibility Evaluation
The estimator’s credibility can be evaluated by defining a threshold, e.g., by a probability
interval of 𝑝 = 0.99, for the double-sided confidence boundary using Equation (2.55). If
the threshold is reasonably high and any ANEES value exceeds these boundaries, the
estimator can be classified as inconsistent, as shown in Figure 2.7.

10https://github.com/uzh-rpg/rpg_trajectory_evaluation

https://github.com/uzh-rpg/rpg_trajectory_evaluation
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Figure 2.7: Shows the classification into inconsistent, pessimistic, optimistic and credible
beliefs of an estimated trajectory with respect to the true trajectory given upper and lower
credibility boundaries.

The uncertainty of pose estimates was previously used to obtain the NEES, e.g., in
Eustice et al. [38], Walter et al. [146], and Geneva [46], but, as correctly mention in [83], a
generalized NEES evaluation suffers from an appropriate error measure and error definition
of the estimates. Typically, for filter-based VINS, an indirect filter formulation (see Sec-
tion 2.8.6) is applied, which implies that the covariance of the error is estimated and many
different choices of the error definition exist, as already discussed in Section 2.4.1. There-
fore, the uncertainty of the estimated nominal-state is expressed in the local coordinates
of the error-state space, rather than in the nominal-state space.

For the NEES computation in Equation (2.50), we need the estimation error which de-
pends on the error-state definition. Since a spatial trajectory alignment might be required
for the estimated trajectory, as discussed in Section 2.7.1, the estimated covariances might
be transformed as well (which depends again on the error-state definition). Alternatively,
the true trajectory can be aligned with the estimated trajectory, which mitigates the need
for transforming the covariances, but leads to counterintuitive/wrong results in case the
trajectories are visualized in plots. For instance, if multiple estimated and a single true
trajectory are visualized in a single 3D plot.

Summarized, it is not trivial and not standardized how to compute the ANEES over
different estimators’ trajectories, given a set of estimates for the position, orientation, and
the associated covariance matrix/matrices11.

2.8 Estimator Types
In order to introduce a common notation and wording, we briefly revisit various types of
estimators.

2.8.1 Kalman Filter (KF)
The Kalman filter [77], estimates the state of a linear dynamic system (or physical plant),
that is perturbed by a zero-mean white Gaussian noise, using measurements that are linear
functions of the systems state and perturbed by additive zero-mean white Gaussian noise.
The linear dynamic system is described by the differential or difference equations of the
state-space model to represent the deterministic and random phenomena/process [50]. The

11The covariance of the position and orientation might be provided separately by two mutually inde-
pendent 3 × 3 covariance matrices, or by single 6 × 6 covariance matrix for the 6-DoF pose including
in the off-diagonal block matrices – the cross-covariance between the position and orientation estimates.
Consequently, the 6 × 6 covariance matrix would allow considering the correlation between the position
and orientation in the computation of the NEES of the estimated pose.
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state variables of the system are, thus, uni- or multivariate random variables, which are
changing over time.

Providing a finite-dimensional representation of the problem at hand by its variables,
parameters, and differential equations are the basis of the state-space approach. Depen-
dent variables of the differential equations are so-called state variables of the dynamic
system [50].

We are interested in discrete-time over a continuous-time dynamic system – a system
that varies continuously of a real interval with the time variable 𝑡. In particular, we are
interested in state variables at a certain point in time, e.g., when a measurement occurred.
Therefore, we use the following shorthand notation of [50], to relate a state variable to a
certain point in time x𝑘 = x(𝑡𝑘), with 𝑡𝑘 = 𝑘Δ𝑡, with a uniform sampling period Δ𝑡 and
consequently 𝑡𝑘 = 𝑡𝑘−1 + Δ𝑡.

A discrete-time system model is described by the discrete-time state equations in the
form of

x𝑘 = Φ𝑘|𝑘−1x𝑘−1 + Γ𝑘−1u𝑘−1, (2.60)

z𝑘 = H𝑘x𝑘, (2.61)

with the state variable x, the state transition matrix from time 𝑡𝑘−1 to time 𝑡𝑘 is Φ𝑘|𝑘−1 =
Φ(𝑡𝑘, 𝑡𝑘−1), the discrete-time control input or input coupling matrix Γ𝑘−1, the control
input u𝑘−1, the measurement (sensitivity) matrix H𝑘, and the measurement or output
vector z𝑘 [50].

Treating the underlying dynamics of the system as a random process, by x ∼ 𝒩 (x̂,Σ),
we can describe the discrete-time linear stochastic system with control input in the general
form

x𝑘 = Φ𝑘|𝑘−1x𝑘−1 + Γ𝑘−1u𝑘−1 + G𝑘−1w𝑘−1, (2.62)

z𝑘 = H𝑘x𝑘 + v𝑘, (2.63)

with the state x vector, G the process noise coupling matrix, w ∼ 𝒩 (0,Q) the zero-mean
white and uncorrelated Gaussian system/plant noise, and v ∼ 𝒩 (0,R) the independent
measurement noise [50].

The standard Kalman filter formulation [77] for the state of previously described lin-
ear stochastic system can be divided in a prediction step Equation (2.64) and update
step Equation (2.65) as follows: The prediction step of the estimated state x̂ and the
corresponding covariance Σ has, e.g., the form

x̂𝑘 = Φ𝑘|𝑘−1x̂𝑘−1, (2.64a)

Σ𝑘 = Φ𝑘|𝑘−1Σ𝑘−1Φ𝑘|𝑘−1T
+ G𝑘−1Q𝑘−1G𝑘−1T

. (2.64b)

The correction step of the a-priori belief x𝑘(−) is defined by the following equations:

r𝑘 = z𝑘 −H𝑘x̂𝑘(−), (2.65a)

with the residual r𝑘, describing the difference between the measured and estimated mea-
surement ẑ𝑘 = H𝑘x̂𝑘(−). The corresponding residual covariance S is defined as

S𝑘 = H𝑘Σ𝑘(−)
𝑖𝑖 (H𝑘)T + R𝑘. (2.65b)
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The Kalman gain K𝑘 is defined as12:

K𝑘 = Σ𝑘(−)
𝑖𝑖 (H𝑘)T(S𝑘)−1. (2.65c)

Alternatively, the Kalman gain can be computed equivalently, according to Xu and Zhang
in [156], in the form of

K𝑘 =
(︂

HTΣ𝑘(−)
𝑖𝑖 H +

(︁
Σ𝑘(−)

𝑖𝑖

)︁−1
)︂−1

HTR−1, (2.65d)

to mitigate computational limits in case the measurement vector is significantly larger
than the state vector.

The a priori state x𝑘(−) is finally updated/corrected by

x̂𝑘(+) = x̂𝑘(−) + K𝑘r𝑘 (2.65e)

and
Σ𝑘(+) = (I−K𝑘H𝑘)Σ𝑘(−), (2.65f)

or the more numerical robust Josephs’ form [50]

Σ𝑘(+) = (I−K𝑘H𝑘)Σ𝑘(−)(I−K𝑘H𝑘)T + K𝑘R𝑘(K𝑘)T, (2.65g)

leading to the a posteriori belief x𝑘(+) ∼ 𝒩
(︁

x̂𝑘(+),Σ𝑘(+)
)︁

.
The Kalman filter is often referred to as a recursive filter, as the process of state pre-

diction steps in Equation (2.64), followed by a state correction steps described in Equa-
tion (2.65) are repeated with the rate the measurements are obtained, without the need
to store previous information.

Remark 2 The KF, is an optimal linear estimator, if the system can be described by a
linear model, in which the system and measurement noise are zero-mean white Gaussian.
The filter is implemented as a recursive data processing algorithm, that incorporates all
information that can be processed (regardless of the precision) to estimate the current
variable (state) of interest, making use of the system dynamic and measurement model,
the a priori knowledge about the system and measurement noise characteristics, and the
information about the initial condition of the state variables [103].

2.8.2 Extended Kalman Filter (EKF)
The majority of dynamic systems are nonlinear and are modeled by a discrete-time non-
linear state transformation in, e.g., the form

x𝑘 = 𝜑(x𝑘−1,u𝑘−1) + w𝑘−1, (2.66a)

z𝑘 = ℎ(x𝑘) + v𝑘. (2.66b)

Since a Kalman filter operates in terms of means and covariances of the assumed Gaus-
sian probability distribution, general nonlinear transformation are likely to violate/change
the values in unpredictable ways. Therefore, nonlinear filtering cannot be implemented ex-
actly [50] and tend to be suboptimal.

Still, in practical applications, linearization techniques are typically applied to use a
Kalman filter in nonlinear estimation problems. The EKF is linearizing the nonlinear plant

12In a univariate estimation problem (1 DoF), the Kalman gain 𝐾 is a value between 0 and 1 optimally
weighting the measurement and, thus, the amount of correction applied on the belief.
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and measurement functions, by computing the Jacobian with respect to the state, about
the estimated trajectory x̂(−) in every time/filter step [50]

Φ ≈ 𝜕𝜑(x,u)
𝜕x

⃒⃒⃒⃒
x=x̂,u

, H ≈ 𝜕ℎ(x)
𝜕x

⃒⃒⃒⃒
x=x̂(−)

. (2.67)

Remark 3 In contrast to the KF, the EKF has no guaranties and does not lead to opti-
mal estimates due to the nonlinear nature of the problem, which is linearized at the best
(current) estimate.

2.8.3 Schmidt-Kalman Filter (SKF)
In order to reduce the computational requirements of Kalman filtering, Stanley F. Schmidt
introduced the concept of nuisance variables in [129], which are state variables that are not
corrected/updated, but considered as part of the state vector. It allows the partitioning

of the dynamics model’s state x =
[︂

x𝑒

x𝑛

]︂
into essential variables x𝑒 and nuisance variables

x𝑛, which are generally used for modeling correlated measurement noise. This approach
is denoted as SKF and leads to suboptimal estimation performance, by applying the so-
called Schmidt-Kalman Gain instead of the Kalman gain. A primary motivation is, that the
dynamics of these nuisance parameters are typically not linked/coupled with the dynamics
of the system of interest, meaning that the off-diagonal blocks of the state transition matrix
and process noise matrix are zero and the prediction step can be partitioned reducing the
order [50].

In contrast to Equation (2.62), the partitioned discrete-time linear stochastic system

for the process x ∼ 𝒩
(︂[︂

x̂𝑒

x̂𝑛

]︂
,

[︂
Σ𝑒𝑒 Σ𝑒𝑛

Σ𝑛𝑒 Σ𝑛𝑛

]︂)︂
obtains the form

[︂
x𝑒

x𝑛

]︂𝑘

=
[︂
Φ𝑒𝑒 0
0 Φ𝑛𝑛

]︂𝑘|𝑘−1 [︂x𝑒

x𝑛

]︂𝑘−1
+
[︂

Γ𝑒

Γ𝑛

]︂𝑘−1 [︂u𝑒

u𝑛

]︂𝑘−1
+
[︂

w𝑒

w𝑛

]︂𝑘−1
, (2.68)

with Γ𝑘−1
𝑛 = 0, Φ𝑘|𝑘−1

𝑛𝑛 = I. As process noise vectors w𝑒 and w𝑛 of the essential sys-
tem and the nuisance parameter (describing e.g., the correlated measurement noise) are
uncorrelated, the process noise matrix obtains the following form

Q =
[︂
Q𝑒𝑒 0
0 Q𝑛𝑛

]︂
(2.69)

and allows computing the covariance prediction in four individual blocks by exploiting the
sparsity of state transition and process noise matrix[︂

Σ𝑒𝑒 Σ𝑒𝑛

Σ𝑛𝑒 Σ𝑛𝑛

]︂𝑘

=
[︂
Φ𝑒𝑒 0
0 Φ𝑛𝑛

]︂𝑘|𝑘−1 [︂Σ𝑒𝑒 Σ𝑒𝑛

Σ𝑛𝑒 Σ𝑛𝑛

]︂𝑘−1 [︂Φ𝑒𝑒 0
0 Φ𝑛𝑛

]︂𝑘|𝑘−1T

+
[︂
Q𝑒𝑒 0
0 Q𝑛𝑛

]︂𝑘−1
.

(2.70)
The partitioned measurement is, like Equation (2.63), in the form

z𝑘 =
[︀
H𝑒𝑒 H𝑛𝑛

]︀𝑘 [︂x𝑒

x𝑛

]︂𝑘

+ v𝑘 = H𝑒𝑒x𝑒 + H𝑛𝑛x𝑛 + v, (2.71)

with the essential state dependence H𝑒𝑒x𝑒, the correlated noise H𝑛𝑛x𝑛, and uncorrelated
noise v ∼ 𝒩 (0,R).

The suboptimal Schmidt-Kalman filter update is derived based on Kalman filter update
steps described in Equation (2.65). The residual r𝑘 is computed by

r𝑘 = z𝑘 −
[︀
H𝑒𝑒 H𝑛𝑛

]︀𝑘 [︂x𝑒

x𝑛

]︂𝑘(−)
. (2.72a)
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The corresponding partitioned residual covariance S is defined as

S𝑘 =
[︀
H𝑒𝑒 H𝑛𝑛

]︀𝑘 [︂Σ𝑒𝑒 Σ𝑒𝑛

Σ𝑛𝑒 Σ𝑛𝑛

]︂𝑘(−) (︁[︀
H𝑒𝑒 H𝑛𝑛

]︀𝑘)︁T
+ R𝑘. (2.72b)

The partitioned Kalman gain K𝑘 =
[︂

K𝑒𝑒

K𝑛𝑛

]︂𝑘

is obtained by

K𝑘 =
[︂

K𝑒𝑒

K𝑛𝑛

]︂𝑘

=
[︂

Σ𝑒𝑒 Σ𝑒𝑛

Σ𝑛𝑒 Σ𝑛𝑛

]︂𝑘(−) (︁[︀
H𝑒𝑒 H𝑛𝑛

]︀𝑘)︁T (︁
S𝑘
)︁−1

, (2.72c)

leading to K𝑘
𝑒𝑒 =

(︁
Σ𝑘(−)

𝑒𝑒 (H𝑘
𝑒𝑒)T + Σ𝑘(−)

𝑒𝑛 (H𝑘
𝑛𝑛)T

)︁(︁
S𝑘
)︁−1

. The suboptimal Schmidt-Kalman

gain K̆𝑘 sets the Kalman gain for nuisance parameters K𝑛𝑛 to zero, which leads to

K̆𝑘 =
[︂
K𝑒𝑒

0

]︂𝑘

. (2.72d)

The suboptimal a priori state x𝑘(−) is finally updated/correct by

x̂𝑘(+) = x̂𝑘(−) + K̆𝑘r𝑘 = x̂𝑘(−) +
[︂
K𝑒𝑒

0

]︂𝑘

r𝑘 (2.72e)

meaning that only the essential parameters obtain a correction x̂𝑘(+)
𝑒 = x̂𝑘(−)

𝑒 + K𝑒𝑒r𝑘 and
x̂𝑘(+)

𝑛 = x̂𝑘(−)
𝑛 . The partitioned covariance is also updated using the Schmidt-Kalman gain

Σ𝑘(+) = (I− K̆𝑘H𝑘)Σ𝑘(−)

=
[︃

(I−K𝑒𝑒H𝑒𝑒)Σ(−)
𝑒𝑒 −K𝑒𝑒H𝑛𝑛Σ(−)

𝑛𝑒 I−K𝑒𝑒H𝑒𝑒)Σ(−)
𝑒𝑛 −K𝑒𝑒H𝑛𝑛Σ(−)

𝑛𝑛

∙ Σ(−)
𝑛𝑛

]︃𝑘

,

(2.72f)

meaning that Σ𝑘(+)
𝑛𝑒 = Σ𝑘(+)

𝑒𝑛

T
and Σ𝑘(+)

𝑛𝑛 = Σ𝑘(−)
𝑛𝑛 [50].

Remark 4 The cross-covariance between essential and nuisance parameters is tracked/-
maintained and is, together with the a-priori covariance of the nuisance parameters, con-
sidered in the update step. The partitioning of the state vector, the constraints in the
dynamic systems, and the Schmidt-Kalman gain, allow reducing the computational effort
significantly. Some of these concepts are heavily used in the proposed algorithms.

2.8.4 Covariance Intersection (CI)
Despite being not directly related to Kalman filtering, CI is important concept of combin-
ing beliefs about a process, when the cross-correlation between the beliefs are unknown.
If they are known the optimal estimate can be obtained using BLUE (see Section 2.8.5).
Generally, CI solves the problem of fusing two beliefs to obtain a new belief by a convex
combination that is provable consistent and was proposed by Julier and Uhlmann in [71].
The CI algorithm is in the form

Σ−1
𝑐𝑐 = 𝜔Σ−1

𝑎𝑎 + (1− 𝜔)Σ−1
𝑏𝑏 (2.73a)

x̂𝑐 = Σ𝑐𝑐

(︁
𝜔Σ−1

𝑎𝑎x̂𝑎 + (1− 𝜔)Σ−1
𝑏𝑏 x̂𝑏

)︁
(2.73b)
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where 𝜔 ∈ [0, 1]. The CI algorithm results in a consistent belief x𝑐 for any correlations
between the beliefs x{𝑎,𝑏} and any choice on 𝜔.

One common way to obtain the weight 𝜔 is e.g., to find the minimum of the (logarithm
of the) determinant or trace of the final uncertainty in the interval 𝜔 ∈ [0, 1]

Σ*
𝑐𝑐 = arg min

06𝜔61
det
(︂(︁

𝜔Σ−1
𝑎𝑎 + (1− 𝜔)Σ−1

𝑏𝑏

)︁−1
)︂

= arg min
06𝜔61

1
det
(︁
𝜔Σ−1

𝑎𝑎 + (1− 𝜔)Σ−1
𝑏𝑏

)︁ (2.73c)

given
det(M) = 1

det
(︁

M−1
)︁ , (2.73d)

for an invertible squared matrix M and allows avoiding the covariance inversion.
In general, the determinant is a measure for spanned volume of the covariance matrix

and indicates the overall uncertainty. In CI, one aims for the most certain result, therefore,
the (logarithm of the) determinant should be minimized by 𝜔. In [120], Reinhardt et al. ,
pointed out that, CI may lead to weights 𝜔 of only 0 and 1, if one of the uncertainties
is within the other, i.e., Σ𝑎𝑎 −Σ𝑏𝑏 ⪰ 0. This means, fusing the two beliefs would always
yield in either x𝑐 = x𝑎 or x𝑐 = x𝑏, depending on which one is more certain, and potential
information provided by the second belief is ignored.

2.8.5 Best Linear Unbiased Estimator (BLUE)
The optimal solution to fuse two beliefs x{𝑎,𝑏} of a common process linearly, in existence
of cross-correlations Σ𝑎𝑏 = ΣT

𝑏𝑎 ̸= 0, is given by the Bar-Shalom-Campo formula [9]
The optimal mean x̂𝑐 is obtained by

x̂𝑐 =(Σ𝑏𝑏 −Σ𝑏𝑎)(Σ𝑎𝑎 + Σ𝑏𝑏 −Σ𝑎𝑏 −Σ𝑏𝑎)−1x̂𝑎+
(Σ𝑎𝑎 −Σ𝑎𝑏)(Σ𝑎𝑎 + Σ𝑏𝑏 −Σ𝑎𝑏 −Σ𝑏𝑎)−1x̂𝑏

(2.74a)

and the optimal covariance in the form

Σ𝑐𝑐 = Σ𝑎𝑎 − (Σ𝑎𝑎 −Σ𝑎𝑏)
T(Σ𝑎𝑎 + Σ𝑏𝑏 −Σ𝑎𝑏 −Σ𝑏𝑎)−1(Σ𝑎𝑎 −Σ𝑎𝑏) (2.74b)

2.8.6 Error-State EKF (ESEKF)
For inertial navigation systems, it became standard to implement the Kalman filter rather
on the error-state space than on the total state space [103].

In the so-called indirect or error-state formulation, the Kalman filter estimates the
uncertainty of error-state x̃, while at the same time the nominal-state x̄ is maintained/in-
tegrated and corrected by injection the estimated error-state. The true state is expressed
as combination of the nominal- and the error-state, e.g., x = x̄ � x̃ [136] (please refer
to the error definitions in Section 2.4). The nominal-state x̄ is considered as large and
high frequent signal which is integrable in non-linear fashion, while the error-state x̃ is
a small, low frequent zero-mean signal, thus linearly integrable and suitable for Kalman
filtering [136]. Meaning that the model of the nominal-states dynamics do not have to be
modeled explicitly in the filter, instead the dynamics of the filter are based on the sys-
tem’s error propagation equations, which are assumed to be low frequent and adequately
represented as linear [125].

In the indirect feedback formulation, measurements are used to correct the nominal-
state as difference between the measured and integrated data, which results in the optimal
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estimate of the error-state. The corrected error-state is added/applied to the nominal-state
to establish an estimate of the total state. At every update step, the error-state correction
is included/injected in the nominal (full) state. Thus, the error-state is assumed to be
zero after applying the correction to the nominal-state13. In the indirect formulation, it is
common to use both high frequent propagation and low frequent update sensors, leading
to a saw tooth evolution of the error-state’s uncertainty. Another property is that the
estimator is lagging on indirectly observed states (that are not measured directly), as it
measure only its effects on other states [125].

In contrast to the EKF, the linearized nonlinear discrete-time plant and measurement
function at a certain time-step 𝑡𝑘, is obtained by computing the Jacobian with respect to
the error-state x̃, about the nominal-state’s trajectory x̄ = x̂(−) in the form of

Φ ≈ 𝜕𝜑(x,u)
𝜕x̃

⃒⃒⃒⃒
x=x̄,u

= 𝜕𝜑(x,u)
𝜕x

⃒⃒⃒⃒
x=x̄,u

𝜕x
𝜕x̃

⃒⃒⃒⃒
x=x̄

(2.75)

and the measurement matrix is obtained by

H ≈ 𝜕ℎ(x)
𝜕x̃

⃒⃒⃒⃒
x=x̄(−)

= 𝜕ℎ(x)
𝜕x

⃒⃒⃒⃒
x=x̄(−)

𝜕x
𝜕x̃

⃒⃒⃒⃒
x=x̄

. (2.76)

Error propagation step

Summarizing [136], the ESEKF maintains two states, the estimated mean of nominal-state
x̄ and the uncertainty of the error-state x̃ ∼ 𝒩 (0,Σ). Assuming the following nonlinear
stochastic system for the process x ∼ 𝒩 (x̂,Σ) in the form

ẋ = 𝑓(x,u,w), (2.77a)

with the noisy control input u = u# − ũ, ũ ∼ 𝒩 (0,U𝑐), and a Gaussian perturbation
w ∼ 𝒩 (0,W𝑐). The continuous-time error-state dynamics of, e.g., ˙̃x = � ˙̂x � ẋ, can be
linearized to

˙̃x = Fx̃ + Bũ + Cw, (2.77b)

with
F ≈ 𝜕𝑓

𝜕x̃

⃒⃒⃒⃒
x,u#

, B ≈ 𝜕𝑓

𝜕ũ

⃒⃒⃒⃒
x,u#

, C ≈ 𝜕𝑓

𝜕w

⃒⃒⃒⃒
x,u#

(2.77c)

The discrete-time error-state dynamics, integrated over Δ𝑡, with Φ𝑘|𝑘−1 = exp(F𝑘−1Δ𝑡),
is

x̃𝑘 = Φ𝑘|𝑘−1x̃𝑘−1 + Δ𝑡Bũ𝑘−1 + Cw𝑘−1, (2.77d)

with w𝑘−1 ∼ 𝒩 (0,Δ𝑡W𝑐) and ũ𝑘−1 ∼ 𝒩 (0,U𝑐). The covariance of the error-state is
propagated by

Σ𝑘 = Φ𝑘|𝑘+1Σ𝑘−1(Φ𝑘|𝑘+1)T + Q𝑘|𝑘−1, (2.77e)

with the integrated process noise Q𝑘|𝑘−1 = Δ𝑡2BU𝑐(B)T + Δ𝑡CW𝑐(C)T, further details
can be found in [136].

Error correction step

Assuming a sensor measurement provides information depending on the total state x in
the form

z = ℎ(x𝑘) + v𝑘, (2.78a)
13The error-state is not explicitly maintained in filter formulation, only it’s covariance and the mean of

the nominal-state
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with the nonlinear measurement function ℎ() and the uncorrelated noise v ∼ 𝒩 (0,R).
The measurement presented to the indirect filter is the difference between the estimated
measurement at nominal-state and the actual measurement in the form

z̃ = �ẑ� z = �ℎ(x̄)� ℎ(x) + v, (2.78b)

which can be approximated by
z̃ ≈ Hx̃ + v. (2.78c)

The linearized measurement matrix is obtained by linearizing Equation (2.78b) with re-
spect to the error-state about the nominal-state (best linearization point available) by

H𝑘 ≈ 𝜕z̃
𝜕x̃

⃒⃒⃒⃒
x=x̂(−)

= 𝜕z̃
𝜕x

⃒⃒⃒⃒
x=x̂𝑘(−)

𝜕x
𝜕x̃

⃒⃒⃒⃒
. (2.78d)

The residual r𝑘 is the difference between observation and estimated observation ẑ𝑘 = ℎ(x̂𝑘)

r𝑘 = �ℎ(x̂𝑘)� z𝑘 = �ẑ𝑘 � z𝑘 (2.78e)

The Kalman gain K𝑘 and a-posteriori covariance Σ𝑘(+) is computed as in the Kalman filter
(see Equation (2.65)) and the nominal-state is corrected by injecting the best estimate of
the error-state ^̃x(+) = 0 = ^̃x(−) �K𝑘r𝑘 (which is zero after the update step)

x̂𝑘(+) = x̂𝑘(+) � ^̃x(+) = x̂𝑘(+) �K𝑘r𝑘, (2.78f)

leading to a reset of the error-state’s mean ^̃x(+) = 0.

2.9 Filter-based Aided Inertial Navigation System (AINS)
For aided inertial navigation, we use a triaxial accelerometer and gyroscope of a Micro
Electro Mechanical Systems (MEMS) IMU (6-DoF) which is strapped down on a ve-
hicle/agent. Low-cost MEMS IMUs are well suited for autonomous navigation systems,
where weight, power consumption and costs are constrained, such as MAVs. The INS pro-
vides attitude and translation information based on proprioceptive sensor data, which are
in generally good high frequency information. An INS based on low-cost and consumer
MEMS IMUs tend to drift unbounded at faster rates due to biases, other systematic, and
random effects, such as random walk or other colored noise, temperature or mechanical
stress of the package. Compared to white noise on gyroscope and accelerometer biases,
the angle and velocity random walk is changing the biases on average with time. Conse-
quently, these biases need to be estimated in order to reduce systematically errors in the
sensor readings. Other systematic errors, such as input axis misalignment, scale factors or
temperature drift, are not considered14.

Additionally, it requires aiding by other navigation/exteroceptive sensors which is in
the best case a navigation sensor that has complementary characteristics, e.g., position
data from GNSS or altitude information from a barometric altimeter. Given the INS and
other exteroceptive sources of data, the aim of a Kalman filter approach is to use the
statistical characteristics of their errors and to determine the optimal combination of the
information available, such that the errors of the estimates are minimized statistically [103].

By integrating gyroscope readings, the indirect filter becomes reliable for high frequent
motion, thus should be corrected by a sensor with a complementary noise profile, which
is small at lower frequencies/motion [125].

14Gimbal-based INS tend to drift at slow rates, but still unbounded, meaning that in long term, the
content of the data is more accurate. These systems are generally bigger, heavier, more expensive, and are
found in spacecrafts, aircrafts and submarines.
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Some successful sensor constellations for AINS are, e.g., loosely-coupled barometric
fusion [15], tightly-coupled UWB-aided inertial odometry [61], tightly-coupled GNSS-aided
inertial odometry [22], VIO [110], VINS [46], radar-aided inertial odometry [107], LIDAR-
aided inertial odometry [155], thermal camera-aided inertial odometry [33], loosely-coupled
visual inertial SLAM [150], and other multi-sensor based approaches, e.g., [18, 36, 58, 87].

In the following sections, we briefly describe the system- and sensor models used in the
filter-based aided INS for our evaluations. As the Jacobians in indirect filter formulations
depend on the error-state definition, it can be a laborious process to derive Jacobians.
Therefore, we provide a generic set of Jacobians for our error definition (the type-1 error
as discussed in Section 2.4.1) and filter formulations.

2.9.1 Inertial Measurement Unit (IMU)
As state propagation sensor, an IMU is used to predict the position, velocity and orienta-
tion based on noisy and biased accelerometer and gyroscope measurements.

The measured linear acceleration and angular velocity of the IMU’s body, are assumed
to be noisy and biased

ℐa# = ℐa + (𝒢Rℐ)T
𝒢g + ℐba + na = ℐa + ℐg + ℐba + na, (2.79a)

ℐ𝜔# = ℐ𝜔 + ℐb𝜔 + n𝜔, (2.79b)

with na ∼ 𝒩 (0,Σa) and n𝜔 ∼ 𝒩 (0,Σ𝜔). ℐba and ℐb𝜔 are the accelerometer and
gyroscope biases, respectively. The known gravitational acceleration is aligned with the
vertically upward z-axis of the global reference frame {𝒢} 𝒢g =

[︀
0; 0; 𝑔

]︀
which is not

changing ˙𝒢g = 0 and with a magnitude of 𝑔 ≈ 9.81 m/s2. We are ignoring the Coriolis
effect, earth rotation, axis miss-alignments. We assume that the origin of both sensor, the
accelerometer and gyroscope, coincide.

We assume that the additive white Gaussian noise on the IMU measurements is equal
on all three axes, meaning that the noise and perturbations are isotropic. The same as-
sumption is made for the random-walk on the biases. The following standard deviations
are typically found in IMU datasets [136]

𝜎a [𝑚/𝑠2], 𝜎𝜔 [𝑟𝑎𝑑/𝑠], 𝜎ba
[𝑚/𝑠2√𝑠], 𝜎b𝜔

[𝑟𝑎𝑑/𝑠
√
𝑠], (2.80)

leading to the covariance matrices with diagonal elements

Σa =
[︁
I𝜎2

a

]︁
,Σ𝜔 =

[︁
I𝜎2

𝜔

]︁
,Σba

=
[︁
I𝜎2

ba

]︁
,Σb𝜔

=
[︁
I𝜎2

b𝜔

]︁
. (2.81)

Note, if an ideal accelerometer is stationary ℐa = 0 and aligned with the global refer-
ence frame 𝒢Rℐ = I, it measures an upward positive acceleration in the z-axis due to the
earth’s gravity field of ℐa# = 0 + 𝒢g and is sometimes referred to as specific acceleration
as it has included the Newtonian gravity force acting on the internal reference/proof mass
of the IMU [26].

System kinematics in continuous time

The dynamics of the IMU true/total state x𝐼 are

˙𝒢
𝒢pℐ = 𝒢

𝒢vℐ , (2.82a)

˙𝒢
𝒢vℐ = 𝒢

𝒢aℐ = 𝒢Rℐℐa = 𝒢Rℐ(ℐa# − ℐba − na)− 𝒢g (2.82b)
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˙𝒢Rℐ = 𝒢Rℐ [ℐ𝜔]× = 𝒢Rℐ

[︁
ℐ𝜔# − ℐb𝜔 − n𝜔

]︁
×
, (2.82c)

˙ℐba = nba
, (2.82d)

˙ℐb𝜔 = nb𝜔
, (2.82e)

with 𝒢
𝒢{p,v,R}ℐ as the position, velocity and orientation of the IMU {ℐ} expressed in

the global navigation frame {𝒢}. ℐa is the acceleration of the IMU’s body, and ℐa# is
the measured specific acceleration. Note that we need to subtract the gravitation vector
from the measured acceleration to obtain the acceleration of the IMU frame {ℐ}. nba

∼
𝒩
(︀
0,Σba

)︀
and nb𝜔

∼ 𝒩
(︀
0,Σb𝜔

)︀
is the random walk noise of the biases.

We can summarize the kinematics in the form ẋ𝐼 = 𝑓𝐼(x𝐼 ,u,w) with

x𝐼 =
[︁

𝒢
𝒢pℐ ; 𝒢

𝒢vℐ ; 𝒢Rℐ ; ℐba ; ℐb𝜔

]︁
, the control input u =

[︃
ℐa#

ℐ𝜔#

]︃
and the Gaussian white

noise w =
[︀
na; n𝜔; nba

; nb𝜔

]︀
∼ 𝒩 (0,Q𝐼).

For the ESEKF formation the nominal-state x̄𝐼 is defined without perturbations and
noise

𝒢
𝒢 ˙̄pℐ = 𝒢

𝒢v̄ℐ , (2.83a)

𝒢
𝒢 ˙̄vℐ = 𝒢R̄ℐ(ℐa# − ¯ℐba)− 𝒢g, (2.83b)

𝒢 ˙̄Rℐ = 𝒢R̄ℐ

[︁
ℐ𝜔# − ¯ℐb𝜔

]︁
×
, (2.83c)

ℐ
˙̄ba = 0, (2.83d)

ℐ
˙̄b𝜔 = 0, (2.83e)

Therefore, the nominal-state of the IMU lies on a product manifold consisting of x̄𝐼 ∈
{R6 × 𝑆𝑂(3) × R6} with 15 DoFs [46]. The kinematics of the nominal-state is in from

˙̄x𝐼 = 𝑓𝐼(x̄𝐼 ,u) with x̄𝐼 =
[︁

𝒢
𝒢p̄ℐ ; 𝒢

𝒢v̄ℐ ; 𝒢R̄ℐ ; ¯ℐba ; ¯ℐb𝜔

]︁
and the control input u =

[︃
ℐa#

ℐ𝜔#

]︃
.

The kinematics of the type-1 errors-state is the difference between the total- and
nominal-state’s kinematic ˙̃x𝐼 = � ˙̄x𝐼 � ẋ𝐼

15. For rotations, we use the small angle ap-
proximation describing a local rotation error

𝒢Rℐ ≈
𝒢R̄ℐ̄

(︂
I +

[︁
ℐ̄ �̃�ℐ

]︁
×

)︂
(2.84a)

and we assume local position and velocity errors, such that

𝒢
𝒢{p,v}ℐ = 𝒢

𝒢{p̄, v̄}ℐ̄ + 𝒢R̄ℐ̄

(︁
ℐ̄
ℐ̄{p̃, ṽ}ℐ

)︁
(2.84b)

the biases are additive
ℐb{a,𝜔} = ℐb̄{a,𝜔} + ℐb̃{a,𝜔} (2.84c)

15The order matters, since not all elements of the state vector are commutative, e.g., the rotation
𝒢Rℐ ∈ 𝑆𝑂(3).
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The error-state of the IMU lies on a product manifold consisting of x̃𝐼 ∈ {R
3×R3×R3×

R3×R3} with 15-DoFs. The kinematics of the error-state can be described after neglecting
second-order terms by

ℐ̄
ℐ̄

˙̃pℐ = ℐ̄
ℐ̄ ṽℐ , (2.84d)

ℐ̄
ℐ̄

˙̃vℐ ≈ −
[︁

ℐa# − b̄a

]︁
×

ℐ̄ �̃�ℐ −
[︁

ℐ𝜔# − ¯ℐb𝜔

]︁
×

ℐ̄ ṽℐ − ˜ℐba − na (2.84e)

𝒢 ˙̃Rℐ ≈ −
[︁

ℐ𝜔# − ¯ℐb𝜔

]︁
×

𝒢R̃ℐ − ˜ℐb𝜔 − n𝜔 (2.84f)

ℐ
˙̃ba = nba

, (2.84g)

ℐ
˙̃b𝜔 = nb𝜔

, (2.84h)

The continuous-time error dynamics can be rearranged in the form

˙̃x = 𝑓𝐼(x̄, x̃,u,w) = Fx̃ + Gw (2.85)

with the control input u =
[︃

ℐa# − ¯ℐba

ℐ𝜔# − ¯ℐb𝜔

]︃
the noise vector w =

[︀
na; n𝜔; nba

; nb𝜔

]︀
∼

𝒩 (0,Q𝐼), and

F =

⎡⎢⎢⎢⎢⎢⎢⎣

0 I 0 0 0
0 −

[︁
ℐ𝜔# − ¯ℐb𝜔

]︁
×
−
[︁

ℐa# − b̄a

]︁
×

0 −I

0 0 −
[︁

ℐ𝜔# − ¯ℐb𝜔

]︁
×
−I 0

0 0 0 0 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ ,G =

⎡⎢⎢⎢⎢⎣
0 0 0 0
0 −I 0 0
−I 0 0 0
0 0 I 0
0 0 0 I

⎤⎥⎥⎥⎥⎦ .
(2.86)

Linear velocity error kinematics Inspired by [136], the linear velocity error in Equation (2.84e)
is obtained by writing the true velocity differential equation (see Equation (2.82b)) in two
different forms, to the left using the nominal- and error-state, and to the right by the true
kinematics

𝑑

𝑑𝑡

[︁
𝒢
𝒢v̄ℐ̄ + 𝒢R̄ℐ̄

ℐ̄
ℐ̄ ṽℐ

]︁
= ˙𝒢

𝒢vℐ = 𝒢Rℐ

(︁
ℐa# − ℐba − na

)︁
− 𝒢g (2.87)

After applying the chain rule ˙𝑓(𝑡)𝑔(𝑡) = ˙𝑓(𝑡)𝑔(𝑡) + 𝑓(𝑡) ˙𝑔(𝑡) the left side expands to

𝒢 ˙̄vℐ̄ + 𝒢 ˙̄Rℐ
ℐ̄
ℐ̄ ṽℐ + 𝒢R̄ℐ

ℐ̄
ℐ̄

˙̃vℐ = ˙𝒢
𝒢vℐ (2.88)

By inserting Equation (2.83b) and Equation (2.83c) is expands to

𝒢R̄ℐ(ℐa# − ¯ℐba)− 𝒢g + 𝒢R̄ℐ

[︁
ℐ𝜔# − ¯ℐb𝜔

]︁
×

ℐ̄
ℐ̄ ṽℐ + 𝒢R̄ℐ

ℐ̄
ℐ̄

˙̃vℐ = ˙𝒢
𝒢vℐ (2.89)

The right side can be expanded by inserting the error definition in Equation (2.84a) and
in Equation (2.84c)

˙𝒢
𝒢vℐ = 𝒢R̄ℐ̄

(︂
I +

[︁
ℐ̄ �̃�ℐ

]︁
×

)︂(︁
ℐa# − (ℐb̄a + ℐb̃a)− na

)︁
− 𝒢g. (2.90)
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After eliminating 𝒢g, a right multiplication by 𝒢R̄ℐ̄
T

, rearranging skew symmetric matrices
by [a]× b = [−b]× a, and further rearrangements to isolate ℐ̄

ℐ̄
˙̃vℐ , we arrive at the differential

equation for the velocity error

ℐ̄
ℐ̄

˙̃vℐ = −
[︁

ℐ𝜔# − ¯ℐb𝜔

]︁
×

ℐ̄
ℐ̄ ṽℐ −

[︁
ℐa# − b̄a

]︁
×

ℐ̄ �̃�ℐ +
[︀
b̃a
]︀
×

ℐ̄ �̃�ℐ − b̃a −
(︂

I +
[︁

ℐ̄ �̃�ℐ

]︁
×

)︂
na

(2.91)
By neglecting higher-order terms, we arrive finally at Equation (2.84e).

Local orientation error kinematics The local orientation error kinematics are equal to the
one presented in [136], for details on the please follow the reference.

System kinematics in discrete time

In the ESEKF formulation, we are interested in the integrated nominal-state and the
predicted error-state’s covariance (the mean of the error-state is and remains always zero).
To propagate the covariance of the error-state from 𝑡𝑘−1 to 𝑡𝑘, we need to compute the
discrete-time process noise matrix Q𝑘−1

𝑑 = G𝑘Q𝑘−1
𝑖 (G𝑘)T and the discrete-time state

transition matrix Φ𝑘|𝑘−1. The discrete-time error dynamics are in the form

x̃𝑘 = Φ𝑘|𝑘−1x̃𝑘−1 + G𝑘i𝑘, (2.92)

where i ∼ 𝒩 (0,Q𝑖) =
[︀
ia; i𝜔; iba

; ib𝜔

]︀
is a vector of random Gaussian impulses. This leads

to the corresponding covariance propagation in the form

Σ𝑘 = Φ𝑘|𝑘−1Σ𝑘−1(Φ𝑘|𝑘−1)T + G𝑘Q𝑘−1
𝑖 (G𝑘)T, (2.93)

In order to obtain the system kinematics of the error-state in discrete time, the differen-
tial equations need to be integrated into differences equations to account for the sampling
intervals Δ𝑡 of the IMU [136]. In our case, we perform a numerical integration of the state
transition matrix by a truncated Tyler-expansion Φ𝑘|𝑘−1 = exp(FΔ𝑡) ≈

∑︀3
𝑘=0 = 1

𝑘!F
𝑘Δ𝑡𝑘.

Given the covariances of the noise and perturbations in continuous-time w (see Equa-
tion (2.81)), we need to integrate covariance of these random variables for the uncertainty
propagation of the error-state. Since the measurement noise and the perturbations, caused
by the random-walk behavior, are different stochastic processes, their integration over Δ𝑡
differs. The later results in discrete white Gaussian impulse [136]

ib{a,𝜔}
∼ 𝒩

(︁
0,Δ𝑡Σb{a,𝜔}

)︁
(2.94)

and the former leads to a quadratic term

i{a,𝜔} ∼ 𝒩
(︁

0,Δ𝑡2Σ{a,𝜔}

)︁
, (2.95)

leading to the impulse variance Q𝑖

Q𝑖 = Diag
(︁[︁

Δ𝑡2Σa,Δ𝑡
2Σ𝜔,Δ𝑡Σba

,Δ𝑡Σb𝜔

]︁)︁
. (2.96)

2.9.2 Zero Velocity Update
If we knew that the INS is standing still, e.g., be detecting a contact with a surface we
assume to remain static/fixed in the global navigation frame {𝒢}, the body acceleration,
body velocity as shown in Figure 2.8, and angular velocity have to be zero, which is an
ideal case to observe the biases in the IMU measurements. The concept of zero-velocity
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Figure 2.8: Contact detection between a rigid body configuration and surface that is fixed
in the world reference.

updates, was applied in, e.g., contact aided inertial navigation for legged robots by Hartley
et al. in [55] or in VINSs, e.g., in [46].

Once a stand-still is detected, we induce noisy pseudo observation in the form

z0 =

⎡⎣𝒢
𝒢vℐ + vv = 0
ℐa + va = 0
ℐ𝜔 + v𝜔 = 0

⎤⎦ = ℎ0(x) + v, (2.97)

with a measurement noise to account for potential vibrations and slippage v =

⎡⎣vv
va
v𝜔

⎤⎦ ∼
𝒩 (0,Diag (Rv,Ra,R𝜔)).

According to the documentation of OpenVINS [46], we can relate the zero velocity
measurement to the latest IMU readings. Recalling the IMU measurement defined in Equa-
tion (2.79), we obtain

ℐa = 0 = ℐa# − (𝒢Rℐ)T
𝒢g − ℐba − na,

ℐ𝜔 = 0 = ℐ𝜔# − ℐb𝜔 − n𝜔.

In the indirect filter formulation, the measurement presented to the filter is the dif-
ference between the estimated and actual measurement, following our error definition
z̃ = ẑ−1z#, and leads to

z̃a = ℐa − ℐa# − (𝒢Rℐ)T
𝒢g − ℐba − na, (2.99a)

z̃𝜔 = ℐ𝜔 − ℐ𝜔# − ℐb𝜔 − n𝜔 (2.99b)

z̃v = 𝒢
𝒢vℐ −

𝒢
𝒢v̂ℐ , (2.99c)

We can linearize this measurement model around the current estimated state x̂ to

obtain the measurement Jacobian H =

⎡⎣Hv
Ha
H𝜔

⎤⎦ = 𝜕z̃
𝜕x
⃒⃒
x̂

𝜕x
𝜕x̃
⃒⃒

for our filter formulation.

Therefore, we express the measured position error by replacing the true value in Equa-
tion (2.101b) with the definition of the total state and insert it in Equation (2.102a) to
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Figure 2.9: Spatial frame constellation of an absolute position, orientation, or pose sensor
with respect to the navigation frame {𝒢}.

derive the partial derivatives with respect to the error-states

𝜕z̃v

𝜕𝒢
𝒢ṽℐ

⃒⃒⃒⃒
⃒
x̂

= 𝒢R̂ℐ (2.100a)

𝜕z̃a

𝜕𝒢
𝒢�̃�ℐ

⃒⃒⃒⃒
⃒
x̂

= −
[︁

𝒢R̂T
ℐ 𝒢g

]︁
×

(2.100b)

𝜕z̃a
𝜕 ˜ℐba

⃒⃒⃒⃒
x̂

= −I (2.100c)

𝜕z̃𝜔

𝜕 ˜ℐb𝜔

⃒⃒⃒⃒
x̂

= −I (2.100d)

2.9.3 Absolute Position, Orientation, and Pose
Absolute information with respect to the navigation frame is needed to correct the drifting
estimates provided by the INS. A rudimentary and generic way to model noisy absolute
position, pose, or orientations is shown in Figure 2.9, by defining displacements between
the IMU, the body reference, and the sensor that is obtaining the information. Outdoors,
GNSS receivers, provide typically earth-fixed ellipsoidal latitude, longitude and altitude
above mean-sea-level estimates that stem from a multilateration of range measurements to
at least four satellites in line of sight (LOS). To determine the distances, the propagation
time of the electromagnetic signal between the satellites and the receiver is measured [131].
Given an earth surface model, these polar angles can be converted into earth-fixed and
earth-centered position information in Cartesian coordinates. Since, we assume that the
navigation frame is near the earth’s crust and that the z-axis is aligned with the grav-
ity vector, the pose between the earth-fixed and earth-centered reference frame and the
navigation frame {𝒢} needs to be considered.

Indoors, absolute information can be provided by additional infrastructure, such as
motion capture systems, that track a reflecting rigid marker configuration on rigid body
using (extrinsically and intrinsically calibrated) infrared cameras. These systems allow
tracking the pose at high rates (greater 100 Hz) and a high accuracy (sub-centimeters and
sub-degrees).

A generic absolute pose measurement, that considers the displacements between the
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sensors attached on the rigid body, is in the form

z# =
[︂

zp
zR

]︂
=
[︃

𝒢
𝒢p𝒮
𝒢R𝒮

]︃
+ n (2.101a)

where n ∼ 𝒩 (0,R) is a white Gaussian noise vector with the covariance matrix R and
with [︃

𝒢
𝒢p𝒮
𝒢R𝒮

]︃
=

⎡⎣
(︁

𝒢T𝒮

)︁
p(︁

𝒢T𝒮

)︁
R

⎤⎦ =

⎡⎣𝒢
𝒢pℐ + 𝒢Rℐ

(︁
ℬRT

ℐ

(︁
−ℬ

ℬpℐ + ℬ
ℬp𝒮

)︁)︁
𝒢R𝒮 = 𝒢Rℐ

ℬRℐ
TℬR𝒮

⎤⎦ (2.101b)

and
𝒢T𝒮 = 𝒢Tℐ

ℬT−1
ℐ

ℬT𝒮 . (2.101c)

In the indirect filter formulation, the measurement presented to the filter is the dif-
ference between the estimated and actual measurement, following our error definition
z̃ = ẑ−1z#, and leads to

z̃ =
[︂

z̃p
z̃R

]︂
=

⎡⎣
(︁

𝒢T̃𝒮

)︁
p(︁

𝒢T̃𝒮

)︁
R

⎤⎦+ n =
[︃

𝒢R̂T
𝒮

(︁
−𝒢

𝒢p̂𝒮 + 𝒢
𝒢p#

𝒮

)︁
𝒢R̂T

𝒮
𝒢R#

𝒮

]︃
+ n (2.102a)

with
𝒢T̃𝒮 = 𝒢T̂−1

𝒮
𝒢T#

𝒮 =
[︂𝒢R̂T

𝒮 −𝒢R̂T
𝒮

𝒢
𝒢p̂𝒮

0 1

]︂ [︂𝒢R#
𝒮

𝒢
𝒢p#

𝒮
0 0

]︂
. (2.102b)

The estimated measurement is obtained using the measurement model in Equation (2.101b).
We can linearize this measurement model around the current estimated state x̂ to

obtain the measurement Jacobian H =
[︂

Hp
HR

]︂
= 𝜕z̃

𝜕x
⃒⃒
x̂

𝜕x
𝜕x̃
⃒⃒
x̂ for our filter formulation.

Therefore, we express the measured position error by replacing the true value in Equa-
tion (2.101b) with the definition of the total state and insert it in Equation (2.102a) to
derive the partial derivatives with respect to the error-states

𝜕z̃p

𝜕𝒢
𝒢p̃ℐ

⃒⃒⃒⃒
⃒
x̂

= I𝒢R̂ℐ (2.103a)

𝜕z̃p

𝜕ℬ
ℬp̃ℐ

⃒⃒⃒⃒
⃒
x̂

= −𝒢R̂ℐ (2.103b)

𝜕z̃p

𝜕ℬ
ℬp̃𝒮

⃒⃒⃒⃒
⃒
x̂

= 𝒢R̂ℐ
ℬR̂T

ℐ
ℬR̂𝒮 (2.103c)

𝜕z̃p

𝜕𝒢 �̃�ℐ

⃒⃒⃒⃒
⃒
x̂

= −𝒢R̂ℐ

[︁
ℬR̂T

ℐ

(︁
−ℬ

ℬp̂ℐ + ℬ
ℬp̂𝒮

)︁]︁
×

(2.103d)

𝜕z̃p

𝜕ℬ�̃�ℐ

⃒⃒⃒⃒
⃒
x̂

= 𝒢R̂ℐ

[︁
ℬR̂T

ℐ

(︁
−ℬ

ℬp̂ℐ + ℬ
ℬp̂𝒮

)︁]︁
×
. (2.103e)

Expressing the measured rotation error by replacing the true value in Equation (2.101b)
with the definition of the total state, the equation in Equation (2.102a) expands to

z̃R = ℬR̂T
𝒮

ℬR̂ℐ
𝒢R̂T

ℐ
𝒢Rℐ

ℬRT
ℐ

ℬR𝒮 + nR (2.104)

z̃R = ℬR̂T
𝒮

ℬR̂ℐ
𝒢R̂T

ℐ
𝒢R̂ℐR(𝒢 �̃�ℐ)R(ℬ�̃�ℐ)TℬR̂T

ℐ
ℬR̂𝒮R(ℬ�̃�𝒮) + nR (2.105)
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Figure 2.10: Shows a differential barometric sensor configuration, with a static reference
sensor ATM, which observes the local pressure and temperature at a known height with
respect to the navigation frame. The pressure sensor, BARO, rigidly attached to the body
observes a pressure locally, which can be used to determine the relative height with respect
to the reference sensor ATM based on the isotherm atmosphere model.

This allows to derive the following partial derivatives with respect to the error-states

𝜕z̃R

𝜕𝒢 �̃�ℐ

⃒⃒⃒⃒
⃒
x̂

= 𝜕

𝜕

{︂(︂
ℬR̂T

𝒮
ℬR̂ℐ

[︁
𝒢 �̃�ℐ

]︁
×

ℬR̂T
ℐ

ℬR̂𝒮

)︂∨}︂
= ℬR̂T

𝒮
ℬR̂ℐ (2.106a)

𝜕z̃R

𝜕ℬ�̃�ℐ

⃒⃒⃒⃒
⃒
x̂

= 𝜕

𝜕

{︂(︂
ℬR̂T

𝒮
ℬR̂ℐ

[︁
−ℬ�̃�ℐ

]︁
×

ℬR̂T
ℐ

ℬR̂𝒮

)︂∨}︂
= −ℬR̂T

𝒮
ℬR̂ℐ (2.106b)

𝜕z̃R

𝜕ℬ�̃�𝒮

⃒⃒⃒⃒
⃒
x̂

= 𝜕

𝜕

{︂(︂
I
[︁

ℬ�̃�𝒮

]︁
×

)︂∨}︂
= I (2.106c)

by using the following identities R(𝜃) ≈ I+[𝜃]× and
(︁

R [𝜃]× RT
)︁∨

=
(︀
[R𝜃]×

)︀∨ = R𝜃 [136].

2.9.4 Barometric Altimeter
In this section, we derive a loosely coupled barometric altimeter, based on a standard
atmosphere model as shown in Figure 2.10.

The barometer measures the local absolute pressure at its position. The sensor’s ex-
trinsic with respect to the body reference frame is denoted as

x𝒫 =
[︁

ℬ
ℬp𝒫

]︁
, (2.107)

which is assumed to be rigid ℬ
ℬṗ𝒫 = 0.

The relative height can be estimated based on the barometric formula of the isotherm
atmosphere model [15]. Therefore, a reference temperature 𝒢𝑇 and pressure 𝒢𝑃 at the
global reference frame 𝒢 needs to be specified (e.g., by a sensor on the ground or by
initial samples at the ground before moving). The barometric pressure 𝒫𝑃 measured by
the sensor onboard is modeled as

𝒫𝑃 = 𝒢𝑃

(︃
1−

𝑐1
𝒢
𝒢ℎ𝒫

𝒢𝑇

)︃𝑐2

, (2.108)
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with 𝒢𝑇 and 𝒢𝑃 being the temperature in Kelvin and pressure in hectopascal. The
standard atmosphere at sea-level on the equator specifies a constant (average) temperature
lapse rate of 𝑐1 = 0.0065 K/m valid up to 11 km and the constant 𝑐2 = 5.257 for dry air16.
By rearranging Equation (2.108), the absolute height of the barometer is obtained in the
form

𝒢
𝒢ℎ𝒫(𝒫𝑃 ) = 𝒢𝑇

𝑐1

(︃(︂
𝒫𝑃

𝒢𝑃

)︂ 1
𝑐2 − 1

)︃
(2.109)

The estimated height of the barometer expressed by the states is

𝒢
𝒢ℎ𝒫 =

(︁
𝒢T𝒫

)︁
𝑧

=
(︁

𝒢Tℐ
ℬTℐ

−1ℬT𝒫

)︁
𝑧

(2.110)

with the mapping (p)𝑧 = [0 0 1] p
The barometer provides noisy pressure readings

𝑧𝒫 = 𝒫𝑃 + 𝑛𝒫 , (2.111)

with Gaussian pressure noise 𝑛𝒫 ∼ 𝒩
(︁

0, 𝜎2
𝒫

)︁
.

In a loosely coupled barometric altimeter fusion, the pressure measurement is con-
verted into a pseudo height measurement 𝑧′

𝒫 using Equation (2.109). Also the noise of the
pressure sensor needs to be converted into a distance variation at the reference pressure.

𝑧′
𝒫 = 𝒢

𝒢ℎ
′
𝒫 + 𝑛′

𝒫 = 𝒢
𝒢ℎ𝒫(𝑧𝒫) + 𝑛′

𝒫 , (2.112)

with 𝑛′
𝒫 = 𝒢

𝒢ℎ𝒫(𝒢𝑃 + 𝑛𝒫).
In the indirect filter formulation, the measurement presented to the filter is the dif-

ference between the estimated and actual measurement, following our error definition
𝑧 = −𝑧 + 𝑧#, and leads to

𝑧 = 𝒢
𝒢ℎ

′#
𝒫 −

𝒢
𝒢 ℎ̂𝒫 = 𝒢

𝒢ℎ
′#
𝒫 −

(︁
𝒢T̂𝒫

)︁
𝑧

(2.113)

The partial derivatives with respect to the error-states are similar to Equation (2.103)
with a constant factor

𝜕z̃p

𝜕𝒢
𝒢p̃ℐ

⃒⃒⃒⃒
⃒
x̂

= [0 0 1] 𝒢R̂ℐ (2.114a)

𝜕z̃p

𝜕ℬ
ℬp̃ℐ

⃒⃒⃒⃒
⃒
x̂

= − [0 0 1] 𝒢R̂ℐ (2.114b)

𝜕z̃p

𝜕ℬ
ℬp̃𝒫

⃒⃒⃒⃒
⃒
x̂

= [0 0 1] 𝒢R̂ℐ
ℬR̂T

ℐ (2.114c)

𝜕z̃p

𝜕𝒢 �̃�ℐ

⃒⃒⃒⃒
⃒
x̂

= − [0 0 1] 𝒢R̂ℐ

[︁
ℬR̂T

ℐ

(︁
−ℬ

ℬp̂ℐ + ℬ
ℬp̂𝒫

)︁]︁
×

(2.114d)

𝜕z̃p

𝜕ℬ�̃�ℐ

⃒⃒⃒⃒
⃒
x̂

= [0 0 1] 𝒢R̂ℐ

[︁
ℬR̂T

ℐ

(︁
−ℬ

ℬp̂ℐ + ℬ
ℬp̂𝒫

)︁]︁
×
. (2.114e)

16The temperature lapse rate is highly influenced by the current weather conditions, e.g., warm weather
leads to a lapse rate of 0.003 K/m to 0.005 K/m, while cold weather 0.006 K/m to 0.008 K/m.
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Figure 2.11: Spatial constellation for local relative observations between two agents.

2.9.5 Relative Position, Orientation, and Pose
In this section we describe local relative position, orientation, and pose observations in
3D between two rigid bodies IMU {ℐ}, body {ℬ}, and sensor {𝒮} frames, to cover a wide
variety of possible constellations that are used in our evaluations for CSE. Please note,
that we can distinguish between local and global relative observations. Local means in
this context, from the perspective of an agent, while global means from the perspective
of a global meta-observer. For example, a local relative position information between the
IMUs {ℐ1} and {ℐ2} is defined as ℐ1

ℐ1
pℐ2

, while this observation can be expressed as a
global observation by ℐ1

𝒢 pℐ2
. This subtle distinction is just relevant for relative position

observation, as translations can be expressed in different reference frames, in this example
either in {ℐ1} or in {𝒢}.

In Figure 2.11, relative observations between to sensors in orange is shown, which is a
generic representation for different realizations. To obtain the relative pose between two
agents, a visual camera at one agent and a visual tag placed on the other agent [63] or a
known LED marker configuration [143] on the other agent can be used. A similar setup is
e.g., used for precision landing for UAVs with visual markers placed on the ground [58].
Alternatively, in [153], the authors proposed to detect other agents using i.e. an Convolu-
tional Neural Network (CNN) and measure the mean depth at the center using a depth
camera. In [48], Gietler et al. proposed a wireless electromagnetic field-based sensor system
that allows to obtain the relative pose between an exciter and a sensor.

A relative position between agents can be obtained by sensors that allow to measure
both the bearing angles and the distance to an object with respect to the sensor, such as
radars, sonars, or LIDARs.

Local Relative Sensor Observations

A generic local relative pose measurement, that considers the displacements between senors
attached on two rigid bodies, is in the form

z# =
[︂

zp
zR

]︂
=
[︃

𝒮1
𝒮1

p𝒮2
𝒮1R𝒮2

]︃
+ n =

⎡⎣
(︁

𝒮1T𝒮2

)︁
p(︁

𝒮1T𝒮2

)︁
R

⎤⎦+ n (2.115a)
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where n ∼ 𝒩 (0,R) is a white Gaussian noise vector with a covariance matrix R and with

⎡⎣
(︁

𝒮1T𝒮2

)︁
p(︁

𝒮1T𝒮2

)︁
R

⎤⎦ =
[︃

ℬ1RT
𝒮1

(︁
−ℬ1

ℬ1
p𝒮1

+ ℬ1
ℬ1

pℐ1
+ ℬ1Rℐ1

𝒢RT
ℐ1

(︁
−𝒢

𝒢pℐ1
+ M2

)︁)︁
ℬ1RT

𝒮1
ℬ1Rℐ1

𝒢RT
ℐ1

𝒢Rℐ2
ℬ2RT

ℐ2
ℬ2R𝒮2

]︃
(2.115b)

with M2 = 𝒢
𝒢pℐ2

+ 𝒢Rℐ2

(︁
ℬ2RT

ℐ2

(︁
−ℬ2

ℬ2
pℐ2

+ ℬ2
ℬ2

p𝒮2

)︁)︁
and

𝒮1T𝒮2
= ℬ1T−1

𝒮1
ℬ1Tℐ1

𝒢T−1
ℐ1

𝒢Tℐ2
ℬ2T−1

ℐ2
ℬ2T𝒮2

. (2.115c)

In the indirect filter formulation, the measurement presented to the filter is the dif-
ference between the estimated and actual measurement, following our error definition
z̃ = ẑ−1z#, and leads to

z̃ =
[︂

z̃p
z̃R

]︂
=

⎡⎣
(︁

𝒮1T̃𝒮2

)︁
p(︁

𝒮1T̃𝒮2

)︁
R

⎤⎦+ n =
[︃𝒮1R̂T

𝒮2

(︁
−𝒮1

𝒮1
p̂𝒮2

+ 𝒮1
𝒮1

p#
𝒮2

)︁
𝒮1R̂T

𝒮2
𝒮1R#

𝒮2

]︃
+ n (2.116a)

with

𝒮1T̃𝒮2
= 𝒮1T̂−1

𝒮2
𝒮1T#

𝒮2
=
[︃

𝒮1R̂T
𝒮2
−𝒮1R̂T

𝒮2
𝒮1
𝒮1

p̂𝒮2

0 1

]︃[︃
𝒮1R#

𝒮2

𝒮1
𝒮2

p#
𝒮2

0 0

]︃
. (2.116b)

The estimated measurement is obtained using the measurement model in Equation (2.115b).
We can linearize this measurement model around the current estimated state x̂ to

obtain the measurement Jacobian H =
[︂

Hp
HR

]︂
= 𝜕z̃

𝜕x
⃒⃒
x̂

𝜕x
𝜕x̃
⃒⃒
x̂ for our filter formulation.

Please note that the measurement matrix of this collaborative/joint observations has a

particular structure H =
[︂

Hp
HR

]︂
=
[︂

H1,p H2,p
H1,R H2,R

]︂
as the estimated beliefs of the individual

agents are stacked x̂ =
[︂
x̂1
x̂2

]︂
(for details please refer to Section 3.2).

Therefore, we express the measured position error by replacing the true value in Equa-
tion (2.101b) with the definition of the total state and insert it in Equation (2.102a) to
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derive the partial derivatives with respect to the error-states by considering the chain rule

𝜕z̃p

𝜕ℬ1 �̃�𝒮1

⃒⃒⃒⃒
⃒
x̂

= 𝒮1R̂T
𝒮2

[︁
ℬ1R̂T

𝒮1

(︁
−ℬ1

ℬ1
p̂𝒮1

+ ℬ1
ℬ1

p̂ℐ1
+ ℬ1R̂ℐ1

𝒢R̂T
ℐ1

(︁
−𝒢

𝒢p̂ℐ1
+ M̂2

)︁)︁]︁
×

(2.117a)

𝜕z̃p

𝜕
ℬ1
ℬ1

p̃𝒮1

⃒⃒⃒⃒
⃒
x̂

= −𝒮1R̂T
𝒮2

ℬ1R̂T
𝒮1

ℬ1R̂𝒮1
= −𝒮1R̂T

𝒮2
(2.117b)

𝜕z̃p

𝜕
ℬ1
ℬ1

p̃ℐ1

⃒⃒⃒⃒
⃒
x̂

= 𝒮1R̂T
𝒮2

ℬ1R̂T
𝒮1

ℬ1R̂ℐ1
= ℬ2R̂T

𝒮2
ℬ2R̂ℐ2

𝒢R̂T
ℐ2

𝒢R̂ℐ1
(2.117c)

𝜕z̃p

𝜕ℬ1 �̃�ℐ1

⃒⃒⃒⃒
⃒
x̂

= −ℬ2R̂T
𝒮2

ℬ2R̂ℐ2
𝒢R̂T

ℐ2
𝒢R̂ℐ1

[︁
𝒢R̂T

ℐ1

(︁
−𝒢

𝒢p̂ℐ1
+ M̂2

)︁]︁
×

(2.117d)

𝜕z̃p

𝜕𝒢 �̃�ℐ1

⃒⃒⃒⃒
⃒
x̂

= ℬ2R̂T
𝒮2

ℬ2R̂ℐ2
𝒢R̂T

ℐ2
𝒢R̂ℐ1

[︁
𝒢R̂T

ℐ1

(︁
−𝒢

𝒢p̂ℐ1
+ M̂2

)︁]︁
×

(2.117e)

𝜕z̃p

𝜕𝒢
𝒢p̃ℐ1

⃒⃒⃒⃒
⃒
x̂

= −𝒮1R̂T
𝒮2

ℬ1R̂T
𝒮1

ℬ1R̂ℐ1
= −ℬ2R̂T

𝒮2
ℬ2R̂ℐ2

𝒢R̂T
ℐ2

𝒢R̂ℐ1
(2.117f)

𝜕z̃p

𝜕𝒢
𝒢p̃ℐ2

⃒⃒⃒⃒
⃒
x̂

= 𝒮1R̂T
𝒮2

ℬ1R̂T
𝒮1

ℬ1R̂ℐ1
𝒢R̂T

ℐ1
𝒢R̂ℐ2

= ℬ2R̂T
𝒮2

ℬ2R̂ℐ2
(2.117g)

𝜕z̃p

𝜕𝒢 �̃�ℐ2

⃒⃒⃒⃒
⃒
x̂

= −ℬ2R̂T
𝒮2

ℬ2R̂ℐ2

[︁
ℬ2R̂T

ℐ2

(︁
−ℬ2

ℬ2
p̂ℐ2

+ ℬ2
ℬ2

p̂𝒮2

)︁]︁
×

(2.117h)

𝜕z̃p

𝜕ℬ2 �̃�ℐ2

⃒⃒⃒⃒
⃒
x̂

= ℬ2R̂T
𝒮2

ℬ2R̂ℐ2

[︁
ℬ2R̂T

ℐ2

(︁
−ℬ2

ℬ2
p̂ℐ2

+ ℬ2
ℬ2

p̂𝒮2

)︁]︁
×

(2.117i)

𝜕z̃p

𝜕
ℬ2
ℬ2

p̃ℐ2

⃒⃒⃒⃒
⃒
x̂

= −𝒮1R̂T
𝒮2

ℬ1R̂T
𝒮1

ℬ1R̂ℐ1
𝒢R̂T

ℐ1
𝒢R̂ℐ2

= −ℬ2R̂T
𝒮2

ℬ2R̂ℐ2
(2.117j)

𝜕z̃p

𝜕
ℬ2
ℬ2

p̃𝒮2

⃒⃒⃒⃒
⃒
x̂

= 𝒮1R̂T
𝒮2

ℬ1R̂T
𝒮1

ℬ1R̂ℐ1
𝒢R̂T

ℐ1
𝒢R̂ℐ2

ℬ2R̂T
ℐ2

ℬ2R̂𝒮2
= I (2.117k)

(2.117l)

Please note, that the chain rule for translational components, due to the local position
error definition was applied. For instance, for partial derivatives w.r.t. the IMU position
error 𝒢

𝒢p̃ℐ1
we obtain

𝜕𝒢
𝒢pℐ1

𝜕𝒢
𝒢p̃ℐ1

⃒⃒⃒⃒
⃒
x̂

= 𝜕

𝜕

{︁
𝒢R̂ℐ1

(︁
𝒢
𝒢p̂ℐ1

+ 𝒢
𝒢p̃ℐ1

)︁}︁
= 𝒢R̂ℐ1

. (2.117m)

Expressing the measured rotation error by replacing the true value in Equation (2.115b)
with the definition of the total state, the equation in Equation (2.116a) expands to

z̃R =ℬ2R̂T
𝒮2

ℬ2R̂ℐ2
𝒢R̂T

ℐ2
𝒢R̂ℐ1

ℬ1R̂T
ℐ1

ℬ1R̂𝒮1

R(ℬ1 �̃�𝒮1
)Tℬ1R̂T

𝒮1
ℬ𝐼 R̂ℐ𝐼

R(ℬ1 �̃�ℐ1
)R(𝒢 �̃�ℐ1

)T𝒢R̂T
ℐ1

𝒢R̂ℐ2
R(𝒢 �̃�ℐ2

)R(ℬ2 �̃�ℐ2
)Tℬ2R̂T

ℐ2
ℬ2R̂𝒮2

R(ℬ2 �̃�𝒮2
) + nR

(2.118)

This allows to derive the following partial derivatives with respect to the error-states,
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with R(𝜃) ≈ I + [𝜃]×,

𝜕z̃R

𝜕ℬ1 �̃�𝒮1

⃒⃒⃒⃒
⃒
x̂

= −ℬ2R̂T
𝒮2

ℬ2R̂ℐ2
𝒢R̂T

ℐ2
𝒢R̂ℐ1

ℬ1R̂T
ℐ1

ℬ1R̂𝒮1
(2.119a)

𝜕z̃R

𝜕ℬ�̃�ℐ

⃒⃒⃒⃒
⃒
x̂

= ℬ2R̂T
𝒮2

ℬ2R̂ℐ2
𝒢R̂T

ℐ2
𝒢R̂ℐ1

(2.119b)

𝜕z̃R

𝜕𝒢 �̃�ℐ1

⃒⃒⃒⃒
⃒
x̂

= −ℬ2R̂T
𝒮2

ℬ2R̂ℐ2
𝒢R̂T

ℐ2
𝒢R̂ℐ1

(2.119c)

𝜕z̃R

𝜕𝒢 �̃�ℐ2

⃒⃒⃒⃒
⃒
x̂

= ℬ2R̂T
𝒮2

ℬ2R̂ℐ2
(2.119d)

𝜕z̃R

𝜕ℬ2 �̃�ℐ2

⃒⃒⃒⃒
⃒
x̂

= −ℬ2R̂T
𝒮2

ℬ2R̂ℐ2
(2.119e)

𝜕z̃R

𝜕ℬ2 �̃�𝒮2

⃒⃒⃒⃒
⃒
x̂

= I. (2.119f)

Note, by neglecting the rotational part of the observation zR = 0 or the transna-
tional part zp = 0 entirely, it can be regarded as relative position or relative orientation
measurement between two sensors, respectively.

Local Relative Body Observations

The local relative measurement model between sensor in Equation (2.115), can be simply
modified to model local relative measurements between two bodies, by setting ℬ{1,2}R̂𝒮{1,2}

and ℬ{1,2}p̂𝒮{1,2}
to the neutral elements pI = 0 and RI = I, respectively.

A generic local relative pose measurement between bodies, that considers the displace-
ments to the IMUs, is in the form

z# =
[︂

zp
zR

]︂
=
[︃

ℬ1
ℬ1

pℬ2
ℬ1Rℬ2

]︃
+ n =

⎡⎣
(︁

ℬ1Tℬ2

)︁
p(︁

ℬ1Tℬ2

)︁
R

⎤⎦+ n (2.120a)

where n ∼ 𝒩 (0,R) is a white Gaussian noise vector with the covariance matrix R and
with⎡⎣

(︁
ℬ1Tℬ2

)︁
p(︁

ℬ1Tℬ2

)︁
R

⎤⎦ =
[︃

ℬ1
ℬ1

pℐ1
+ ℬ1Rℐ1

𝒢RT
ℐ1

(︁
−𝒢

𝒢pℐ1
+ 𝒢

𝒢pℐ2
+ 𝒢Rℐ2

(︁
−ℬ2RT

ℐ2
ℬ2
ℬ2

pℐ2

)︁)︁
ℬ1Rℐ1

𝒢RT
ℐ1

𝒢Rℐ2
ℬ2RT

ℐ2

]︃
(2.120b)

ℬ1Tℬ2
= ℬ1Tℐ1

𝒢T−1
ℐ1

𝒢Tℐ2
ℬ2T−1

ℐ2
. (2.120c)

Consequently, there are no partial derivatives with respect to these error-states, such
that

𝜕z̃p

𝜕ℬ{1,2} �̃�𝒮{1,2}

⃒⃒⃒⃒
⃒
x̂

= 0,
𝜕z̃p

𝜕
ℬ{1,2}
ℬ{1,2}

p̃𝒮{1,2}

⃒⃒⃒⃒
⃒⃒
x̂

= 0, 𝜕z̃R

𝜕ℬ{1,2}1�̃�𝒮{1,2}

⃒⃒⃒⃒
⃒
x̂

= 0. (2.121)

Note, by neglecting the rotational part of the observation zR = 0 or the transna-
tional part zp = 0 entirely, it can be regarded as relative position or relative orientation
measurement between two bodies, respectively.
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Local Relative IMU Observations

The local relative measurement model between bodies in Equation (2.120), can be simply
modified to model local relative measurements between two IMUs, by setting ℬ{1,2}R̂ℐ{1,2}

and ℬ{1,2}p̂ℐ{1,2}
to the neutral elements, respectively.

A generic local relative pose measurement between IMUs is in the form

z# =
[︂

zp
zR

]︂
=
[︃

ℐ1
ℐ1

pℐ2
ℐ1Rℐ2

]︃
+ n =

⎡⎣
(︁

ℐ1Tℐ2

)︁
p(︁

ℐ1Tℐ2

)︁
R

⎤⎦+ n (2.122a)

where n ∼ 𝒩 (0,R) is a white Gaussian noise vector with the covariance matrix R and
with ⎡⎣

(︁
ℐ1Tℐ2

)︁
p(︁

ℐ1Tℐ2

)︁
R

⎤⎦ =
[︃

𝒢RT
ℐ1

(︁
−𝒢

𝒢pℐ1
+ 𝒢

𝒢pℐ2

)︁
𝒢RT

ℐ1
𝒢Rℐ2

]︃
(2.122b)

ℐ1Tℐ2
= 𝒢T−1

ℐ1
𝒢Tℐ2

. (2.122c)
Consequently, there are no partial derivatives with respect to these error-states, such

that
𝜕z̃p

𝜕ℬ{1,2} �̃�ℐ{1,2}

⃒⃒⃒⃒
⃒
x̂

= 0,
𝜕z̃p

𝜕
ℬ{1,2}
ℬ{1,2}

p̃ℐ{1,2}

⃒⃒⃒⃒
⃒⃒
x̂

= 0, 𝜕z̃R

𝜕ℬ{1,2}1�̃�ℐ{1,2}

⃒⃒⃒⃒
⃒
x̂

= 0. (2.123)

Note, by neglecting the rotational part of the observation zR = 0 or the transna-
tional part zp = 0 entirely, it can be regarded as relative position or relative orientation
measurement between two IMUs, respectively.

2.9.6 Range Measurements
In this section, we consider four different ranging constellations as depict in Figure 2.12.
First, range measurement between a rigidly attached moving ranging device, a so-called
tag, and a stationary ranging device, a so-called anchor. Second, range measurements
between a stationary anchor and a moving tag. Third, range measurements between two
stationary anchors, and finally, range measurements between two moving tags.

Despite being of lower dimensional (1D), in contrast to, for instance, position mea-
surements, relative range or distance information is easier to obtain by sensors, e.g., based
to time-of-arrival or received signal strength. Besides, these sensors are typically cheaper.
In general, range-based localization systems use time difference of arrival (TDOA), time
of arrival (TOA), return time of flight (RTOF) [115] or received signal strength (RSS)
metrics/lateration techniques to estimate the distance between the antennas [127]. A
promising technology for both data transmission and localization is based on UWB radio
frequency (RF) signals [127]. Benefitial characteristics for estimating distances between
two transceivers, are the large bandwidths, that allow UWB receivers to accurately es-
timate the arrival time of the first signal path [127], and it’s capabilitiy to penetrate
obstacles [152].

Tag to Anchor (T-A) Range Measurement

The range sensor measures the distance between two devices, e.g., a ranging device based
on UWB measures the distance between two antennas, as shown in Figure 2.12.

For moving ranging tags and stationary ranging anchors, a spatial displacement to a
reference frame is estimated

x{𝒯 ,𝒜} =
[︁

{ℬ,𝒢}
{ℬ,𝒢}p{𝒯 ,𝒜}

]︁
(2.124a)
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Figure 2.12: Spatial constellation of ranging (modified image that was published by Jung
and Weiss in [75]).

which is not changing in time {ℬ,𝒢}
{ℬ,𝒢}ṗ{𝒯 ,𝒜} = 0.

The range measurement between a tag and an anchor (T-A) is modeled as
𝒯 𝑧𝒜 = 𝒯 𝑑𝒜 + 𝑛r, (2.124b)

with Gaussian ranging noise 𝑛r ∼ 𝒩 (0, 𝜎2
𝑟 ) and with

𝒯 𝑑𝒜 =
⃦⃦𝒯

𝒯 p̂𝒜
⃦⃦

2 (2.124c)

and
𝒯
𝒯 p𝒜 =

(︁
𝒯 T𝒜

)︁
p

=
(︁

ℬT−1
𝒯

ℬTℐ
𝒢T−1

ℐ
𝒢T𝒜

)︁
p

= ℬRT
𝒯

(︁
−ℬ

ℬp𝒯 + ℬ
ℬpℐ + ℬRℐ

𝒢R−1
ℐ

(︁
−𝒢

𝒢pℐ + 𝒢
𝒢p𝒜

)︁)︁
.

(2.124d)

As the distance measurement is invariant to the orientation ℬR𝒯 = I of the tag {𝒯 } with
respect to the body frame, it can be set to the neutral element. If the displacement of,
e.g., the UWB antenna and the tag needs to be modeled, this rotation is required.

In the indirect filter formulation, the measurement presented to the filter is the dif-
ference between the estimated and actual measurement, following our error definition
z̃ = ẑ−1z#, and leads to

z̃ = −
⃦⃦⃦⃦(︁

𝒯 T̃𝒜

)︁
p

⃦⃦⃦⃦
+ 𝒯 𝑑#

𝒜 + n =
⃦⃦⃦

𝒯
𝒯 p𝒜

⃦⃦⃦
−
⃦⃦⃦

𝒯
𝒯 p̂𝒜

⃦⃦⃦
+ n. (2.125a)

We can linearize this measurement model, by replacing the true value with the total
state definition, at the current estimated state x̂ to obtain the measurement Jacobian

H = 𝜕z̃
𝜕x
⃒⃒
x̂

𝜕x
𝜕x̃
⃒⃒
x̂ =

𝜕
⃦⃦⃦

𝒯
𝒯 p𝒜

⃦⃦⃦
𝜕x

⃒⃒⃒⃒
⃒
x̂

𝜕x
𝜕x̃
⃒⃒
x̂ with respect to the error-state for our filter formulation.

The Jacobian of the vector norm (𝑙2-norm), which can be split up into two function-
s/operations

𝑓(x) = ‖x‖ = 𝑠(𝑝(x)) =
√︁
‖x‖2 (2.126a)

with 𝑠(t) =
√

t and 𝑝(v) = ‖v‖2 = vTv, is obtained by applying the chain rule

𝜕‖x‖
𝜕x = 𝜕𝑓

𝜕x = 𝜕𝑠(·)
𝜕t

⃒⃒⃒⃒
x

𝜕𝑝(·)
𝜕v

⃒⃒⃒⃒
x

= 1
2
√

x
2xT = xT

√
x

(2.126b)
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with
𝜕𝑠

𝜕t = 1
2
√

t
,
𝜕𝑝

𝜕v = 2vT. (2.126c)

Consequently, the Jacobian with respect to the error-state is in the form

𝜕z̃
𝜕x̃ =

𝜕
⃦⃦⃦

𝒯
𝒯 p𝒜

⃦⃦⃦
𝜕𝒯

𝒯 p𝒜

⃒⃒⃒⃒
⃒⃒
x̂

𝜕𝒯
𝒯 p𝒜
𝜕x

⃒⃒⃒⃒
⃒
x̂

𝜕x
𝜕x̃

⃒⃒⃒⃒
x̂
. (2.127a)

According to Equation (2.126), we obtain for the norm a 1× 3 matrix

𝜕
⃦⃦⃦

𝒯
𝒯 p𝒜

⃦⃦⃦
𝜕𝒯

𝒯 p𝒜

⃒⃒⃒⃒
⃒⃒
x̂

=
𝒯
𝒯 p̂T

𝒜⃦⃦⃦
𝒯
𝒯 p̂𝒜

⃦⃦⃦ , (2.127b)

and the following partial derivatives of the translation 𝒯
𝒯 p𝒜 with respect to the error-states

𝜕𝒯
𝒯 p𝒜

𝜕ℬ
ℬp̃𝒯

⃒⃒⃒⃒
⃒
x̂

= 𝜕𝒯
𝒯 p𝒜

𝜕ℬ
ℬp𝒯

⃒⃒⃒⃒
⃒
x̂

𝜕ℬ
ℬp𝒯

𝜕ℬ
ℬp̃𝒯

⃒⃒⃒⃒
⃒
x̂

= −IℬR̂𝒯 = −I (2.127c)

𝜕𝒯
𝒯 p𝒜

𝜕ℬ
ℬp̃ℐ

⃒⃒⃒⃒
⃒
x̂

= IℬR̂ℐ (2.127d)

𝜕𝒯
𝒯 p𝒜

𝜕ℬ�̃�ℐ

⃒⃒⃒⃒
⃒
x̂

= −ℬR̂ℐ

[︁
𝒢R̂T

ℐ (−𝒢
𝒢p̂ℐ + 𝒢

𝒢p̂𝒜)
]︁

×
(2.127e)

𝜕𝒯
𝒯 p𝒜

𝜕𝒢 �̃�ℐ

⃒⃒⃒⃒
⃒
x̂

= ℬR̂ℐ

[︁
𝒢R̂T

ℐ (−𝒢
𝒢p̂ℐ + 𝒢

𝒢p̂𝒜)
]︁

×
(2.127f)

𝜕𝒯
𝒯 p𝒜

𝜕𝒢
𝒢p̃ℐ

⃒⃒⃒⃒
⃒
x̂

= −ℬR̂ℐ
𝒢R̂T

ℐ
𝒢R̂ℐ = −ℬR̂ℐ (2.127g)

𝜕𝒯
𝒯 p𝒜

𝜕𝒢
𝒢p̃𝒜

⃒⃒⃒⃒
⃒
x̂

= ℬR̂ℐ
𝒢R̂T

ℐ
𝒢R̂𝒜 = ℬR̂ℐ

𝒢R̂T
ℐ . (2.127h)

Note that the following Jacobians of the estimated translations with respect to the error-
states were applied

𝜕ℬ
ℬp𝒯

𝜕ℬ
ℬp̃𝒯

⃒⃒⃒⃒
⃒
x̂

= ℬ
ℬp̂𝒯 + ℬR̂𝒯

ℬ
ℬp̃𝒯 = ℬR̂𝒯 = I (2.127i)

𝜕ℬ
ℬpℐ

𝜕ℬ
ℬp̃ℐ

⃒⃒⃒⃒
⃒
x̂

= ℬR̂ℐ (2.127j)

𝜕𝒢
𝒢pℐ

𝜕𝒢
𝒢p̃ℐ

⃒⃒⃒⃒
⃒
x̂

= 𝒢R̂ℐ (2.127k)

𝜕𝒢
𝒢p𝒜

𝜕𝒢
𝒢p̃𝒜

⃒⃒⃒⃒
⃒
x̂

= 𝒢R̂𝒜 = I (2.127l)

Anchor to Tag (A-T) Range Measurement

Range measurements between a stationary anchor and a moving tag results in equal dis-
tances as from a moving tag and a stationary anchor, as described in Section 2.9.6, but
will result in a different linearized measurement matrix.

For the moving ranging tags and stationary ranging anchors, a spatial displacement
to a reference frame is estimated, see Equation (2.124a), which is not changing in time
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{ℬ,𝒢}
{ℬ,𝒢}ṗ{𝒯 ,𝒜} = 0. The range measurement between an anchor and an tag (A-T) is modeled
as

𝒜𝑧𝒯 = 𝒜𝑑𝒯 + 𝑛r, (2.128a)
with Gaussian ranging noise 𝑛r ∼ 𝒩 (0, 𝜎2

𝑟 ) and with
𝒜𝑑𝒯 =

⃦⃦𝒜
𝒜p̂𝒯

⃦⃦
2 (2.128b)

and
𝒜
𝒜p𝒯 =

(︁
𝒜T𝒯

)︁
p

=
(︁

𝒢T−1
𝒜

𝒢Tℐ
ℬT−1

ℐ
ℬT𝒜

)︁
p

= 𝒢RT
𝒜

(︁
−𝒢

𝒢p𝒜 + 𝒢
𝒢pℐ + 𝒢Rℐ

ℬR−1
ℐ

(︁
−ℬ

ℬpℐ + ℬ
𝒜p𝒯

)︁)︁
.

(2.128c)

As the distance measurement is invariant to the orientation of the sensor’s reference frame,
it can be set to the neutral element by ℬR𝒯 = I 𝒢R𝒜 = I . If the displacement of, e.g.,
the UWB antenna of the tag needs to be modeled, these rotations are required.

In the indirect filter formulation, the measurement presented to the filter is the dif-
ference between the estimated and actual measurement, following our error definition
z̃ = ẑ−1z#, and leads to

z̃ = −
⃦⃦⃦⃦(︁

𝒜T̃𝒯

)︁
p

⃦⃦⃦⃦
+ 𝒜𝑑#

𝒯 + n =
⃦⃦⃦

𝒜
𝒜p𝒯

⃦⃦⃦
−
⃦⃦⃦

𝒜
𝒜p̂𝒯

⃦⃦⃦
+ n. (2.129a)

We can linearize this measurement model, by replacing the true value with the total
state definition, at the current estimated state x̂ to obtain the measurement Jacobian

H = 𝜕z̃
𝜕x
⃒⃒
x̂

𝜕x
𝜕x̃
⃒⃒
x̂ =

𝜕
⃦⃦⃦

𝒯
𝒯 p𝒜

⃦⃦⃦
𝜕x

⃒⃒⃒⃒
⃒
x̂

𝜕x
𝜕x̃
⃒⃒
x̂ with respect to the error-state for our filter formulation.

The measurement matrix Jacobian with respect to the error-state is in the form

𝜕z̃
𝜕x̃ =

𝜕
⃦⃦⃦

𝒜
𝒜p𝒯

⃦⃦⃦
𝜕𝒜

𝒜p𝒯

⃒⃒⃒⃒
⃒⃒
x̂

𝜕𝒜
𝒜p𝒯
𝜕x

⃒⃒⃒⃒
⃒
x̂

𝜕x
𝜕x̃

⃒⃒⃒⃒
x̂
. (2.130a)

According to Equation (2.126), we obtain for the norm a 1× 3 matrix

𝜕
⃦⃦⃦

𝒜
𝒜p𝒯

⃦⃦⃦
𝜕𝒜

𝒜p𝒯

⃒⃒⃒⃒
⃒⃒
x̂

=
𝒜
𝒜p̂T

𝒯⃦⃦⃦
𝒜
𝒜p̂𝒯

⃦⃦⃦ , (2.130b)

and the following partial derivatives of the translation 𝒜
𝒜p𝒯 with respect to the error-states

𝜕𝒜
𝒜p𝒯

𝜕ℬ
ℬp̃𝒯

⃒⃒⃒⃒
⃒
x̂

= 𝜕𝒜
𝒜p𝒯

𝜕ℬ
ℬp𝒯

⃒⃒⃒⃒
⃒
x̂

𝜕ℬ
ℬp𝒯

𝜕ℬ
ℬp̃𝒯

⃒⃒⃒⃒
⃒
x̂

= 𝒢R̂T
𝒜

𝒢R̂ℐ
ℬR̂T

ℐ I (2.130c)

𝜕𝒜
𝒜p𝒯

𝜕ℬ
ℬp̃ℐ

⃒⃒⃒⃒
⃒
x̂

= −𝒢R̂T
𝒜

𝒢R̂ℐ
ℬR̂T

ℐ
ℬR̂ℐ = −𝒢R̂T

𝒜
𝒢R̂ℐ (2.130d)

𝜕𝒜
𝒜p𝒯

𝜕ℬ�̃�ℐ

⃒⃒⃒⃒
⃒
x̂

= +𝒢R̂T
𝒜

𝒢R̂ℐ

[︁
ℬR̂T

ℐ (−ℬ
ℬp̂ℐ + ℬ

ℬp̂𝒯 )
]︁

×
(2.130e)

𝜕𝒜
𝒜p𝒯

𝜕𝒢 �̃�ℐ

⃒⃒⃒⃒
⃒
x̂

= −𝒢R̂T
𝒜

𝒢R̂ℐ

[︁
ℬR̂T

ℐ (−ℬ
ℬp̂ℐ + ℬ

ℬp̂𝒯 )
]︁

×
(2.130f)

𝜕𝒜
𝒜p𝒯

𝜕𝒢
𝒢p̃ℐ

⃒⃒⃒⃒
⃒
x̂

= 𝒢R̂T
𝒜

𝒢R̂ℐ (2.130g)

𝜕𝒜
𝒜p𝒯

𝜕𝒢
𝒢p̃𝒜

⃒⃒⃒⃒
⃒
x̂

= −𝒢R̂T
𝒜

𝒢R̂𝒜 = −I, (2.130h)
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with 𝒢R̂𝒜 = I.

Anchor to Anchor (A-A) Range Measurement

In this section, we cover the range measurements (A-A) between two stationary anchors.
For the stationary ranging anchors, a spatial displacement to the global reference frame
{𝒢} is estimated, see Equation (2.124a), which is not changing in time 𝒢

𝒢ṗ𝒜 = 0. The
range measurement between an anchor and an tag (A-A) is modeled as

𝒜1𝑧𝒜2
= 𝒜1𝑑𝒜2

+ 𝑛r, (2.131a)

with Gaussian ranging noise 𝑛r ∼ 𝒩 (0, 𝜎2
𝑟 ) and with

𝒜1𝑑𝒜2
=
⃦⃦𝒜1

𝒜1
p𝒜2

⃦⃦
2 (2.131b)

and
𝒜1
𝒜1

p𝒜2
=
(︁

𝒜1T𝒜2

)︁
p

=
(︁

𝒢T−1
𝒜1

𝒢T𝒜2

)︁
p

= 𝒢RT
𝒜1

(︁
−𝒢

𝒢p𝒜1
+ 𝒢

𝒢p𝒜2

)︁
.

(2.131c)

As the distance measurement is invariant to the orientation of the sensor’s reference frame,
it can be set to the neutral element by 𝒢R𝒜 = I. If the displacement of, e.g., the UWB
antenna of the tag needs to be modeled, these rotations is required. In the indirect
filter formulation, the measurement presented to the filter is the difference between the
estimated and actual measurement, following our error definition z̃ = ẑ−1z#, and leads to

z̃ = −
⃦⃦⃦⃦(︁

𝒜1T̃𝒜2

)︁
p

⃦⃦⃦⃦
+ 𝒜1𝑑#

𝒜2
+ n =

⃦⃦⃦
𝒜1
𝒜1

p𝒜2

⃦⃦⃦
−
⃦⃦⃦

𝒜1
𝒜1

p̂𝒜2

⃦⃦⃦
+ n. (2.132a)

We can linearize this measurement model, by replacing the true value with the total state
definition, at the current estimated state x̂ to obtain the measurement Jacobian H = 𝜕z̃

𝜕x
⃒⃒
x̃

with respect to the error-state for our filter formulation. The measurement Jacobian with
respect to the error-state is in the form

𝜕z̃
𝜕x̃ =

𝜕
⃦⃦⃦

𝒜1
𝒜1

p𝒜2

⃦⃦⃦
𝜕

𝒜1
𝒜1

p𝒜2

⃒⃒⃒⃒
⃒⃒
x̂

𝜕
𝒜1
𝒜1

p𝒜2

𝜕x

⃒⃒⃒⃒
⃒
x̂

𝜕x
𝜕x̃

⃒⃒⃒⃒
x̂
. (2.132b)

According to Equation (2.126), we obtain for the norm a 1× 3 matrix

𝜕
⃦⃦⃦

𝒜1
𝒜1

p𝒜2

⃦⃦⃦
𝜕

𝒜1
𝒜1

p𝒜2

⃒⃒⃒⃒
⃒⃒
x̂

=
𝒜1
𝒜1

p̂T
𝒜2⃦⃦⃦

𝒜1
𝒜1

p̂𝒜2

⃦⃦⃦ , (2.132c)

and the following partial derivatives of the translation 𝒜1
𝒜1

p𝒜2
with respect to the error-

states

𝜕
𝒜1
𝒜1

p𝒜2

𝜕𝒢
𝒢p̃𝒜1

⃒⃒⃒⃒
⃒
x̂

= −𝒢R̂T
𝒜1

𝒢R̂𝒜1
= −I, (2.132d)

𝜕
𝒜1
𝒜1

p𝒜2

𝜕𝒢
𝒢p̃𝒜2

⃒⃒⃒⃒
⃒
x̂

= 𝒢R̂T
𝒜1

𝒢R̂𝒜2
= I, (2.132e)

with 𝒢R̂𝒜{1,2}
= I.
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Tag to Tag (T-T) Range Measurement

Finally, we model the range measurement between two moving tags, e.g., a ranging device
based on UWB measures the distance between two antennas, as shown in Figure 2.12.

For the moving ranging tags, a spatial displacement to a reference frame {𝒯 } is esti-
mated

x𝒯 =
[︁ℬ{1,2}

ℬ{1,2}
p𝒯{1,2}

]︁
(2.133a)

which is not changing in time ℬ{1,2}
ℬ{1,2}

ṗ𝒯{1,2}
= 0.

The range measurement between two tags (T-T) is modeled as

𝒯1𝑧𝒯2
= 𝒯1𝑑𝒯2

+ 𝑛r, (2.133b)

with Gaussian ranging noise 𝑛r ∼ 𝒩 (0, 𝜎2
𝑟 ) and with

𝒯1𝑑𝒯2
=
⃦⃦𝒯1

𝒯1
p̂𝒯2

⃦⃦
2 (2.133c)

and

𝒯1
𝒯1

p𝒯2
=
(︁

𝒯1T𝒯2

)︁
p

=
(︁

ℬ1T−1
𝒯1

ℬ1Tℐ1
𝒢T−1

ℐ1
𝒢Tℐ2

ℬ2TT
ℐ2

ℬ2T𝒯2

)︁
p

= ℬ1RT
𝒯1

(︁
−ℬ1

ℬ1
p𝒯1

+ ℬ1
ℬ1

pℐ1
+ ℬ1Rℐ1

𝒢RT
ℐ1

(︁
−𝒢

𝒢pℐ1

+𝒢
𝒢pℐ2

+ 𝒢Rℐ2

(︁
ℬ2RT

ℐ2

(︁
−ℬ2

ℬ2
pℐ2

+ ℬ2
ℬ2

p𝒯2

)︁)︁)︁)︁
.

(2.133d)

As the distance measurement is invariant to the orientation of the sensor’s reference frame,
it can be set to the neutral element by ℬR𝒯1

= I and ℬR𝒯2
= I . If the displacement of,

e.g., the UWB antenna of the tag needs to be modeled, these rotations are required. In
the indirect filter formulation, the measurement presented to the filter is the difference
between the estimated and actual measurement, following our error definition z̃ = ẑ−1z#,
and leads to

z̃ = −
⃦⃦⃦⃦(︁

𝒯1T̃𝒯2

)︁
p

⃦⃦⃦⃦
+ 𝒯1𝑑#

𝒯2
+ n =

⃦⃦⃦
𝒯1
𝒯1

p𝒯2

⃦⃦⃦
−
⃦⃦⃦

𝒯1
𝒯1

p̂𝒯2

⃦⃦⃦
+ n. (2.134a)

We can linearize this measurement model, by replacing the true value with the total state
definition, at the current estimated state x̂ to obtain the measurement Jacobian H = 𝜕z̃

𝜕x
⃒⃒
x̃

with respect to the error-state for our filter formulation. The measurement matrix with
respect to the error-state is in the form

𝜕z̃
𝜕x̃ =

𝜕
⃦⃦⃦

𝒯1
𝒯1

p𝒯2

⃦⃦⃦
𝜕

𝒯1
𝒯1

p𝒯2

⃒⃒⃒⃒
⃒⃒
x̂

𝜕
𝒯1
𝒯1

p𝒯2

𝜕x

⃒⃒⃒⃒
⃒
x̂

𝜕x
𝜕x̃

⃒⃒⃒⃒
x̂
. (2.134b)

According to Equation (2.126), we obtain for the norm a 1× 3 matrix

𝜕
⃦⃦⃦

𝒯1
𝒯1

p𝒯2

⃦⃦⃦
𝜕

𝒯1
𝒯1

p𝒯2

⃒⃒⃒⃒
⃒⃒
x̂

=
𝒯1
𝒯1

p̂T
𝒯2⃦⃦⃦

𝒯1
𝒯1

p̂𝒯2

⃦⃦⃦ , (2.134c)

and the following partial derivatives of the translation 𝒯1
𝒯1

p𝒯2
with respect to the error-

states, which is similar to the Jacobians for the local relative position measurement between
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two sensors in Equation (2.117),

𝜕
𝒯1
𝒯1

p𝒯2

𝜕ℬ1 �̃�𝒯1

⃒⃒⃒⃒
⃒
x̂

=
[︁

ℬ1R̂T
𝒯1

(︁
−ℬ1

ℬ1
p̂𝒯1

+ ℬ1
ℬ1

p̂ℐ1
+ ℬ1R̂ℐ1

𝒢R̂T
ℐ1

(︁
−𝒢

𝒢p̂ℐ1
+ M̂2

)︁)︁]︁
×

(2.134d)

M̂2 = (2.134e)

𝜕
𝒯1
𝒯1

p𝒯2

𝜕
ℬ1
ℬ1

p̃𝒯1

⃒⃒⃒⃒
⃒
x̂

= −ℬ1R̂T
𝒯1

ℬ1R̂𝒯1
= −I (2.134f)

𝜕
𝒯1
𝒯1

p𝒯2

𝜕
ℬ1
ℬ1

p̃ℐ1

⃒⃒⃒⃒
⃒
x̂

= ℬ1R̂T
𝒯1

ℬ1R̂ℐ1
(2.134g)

𝜕
𝒯1
𝒯1

p𝒯2

𝜕ℬ1 �̃�ℐ1

⃒⃒⃒⃒
⃒
x̂

= −ℬ1R̂T
𝒯1

ℬ1R̂ℐ1

[︁
𝒢R̂T

ℐ1

(︁
−𝒢

𝒢p̂ℐ1
+ M̂2

)︁]︁
×

(2.134h)

𝜕
𝒯1
𝒯1

p𝒯2

𝜕𝒢 �̃�ℐ1

⃒⃒⃒⃒
⃒
x̂

= ℬ1R̂T
𝒯1

ℬ1R̂ℐ1

[︁
𝒢R̂T

ℐ1

(︁
−𝒢

𝒢p̂ℐ1
+ M̂2

)︁]︁
×

(2.134i)

𝜕
𝒯1
𝒯1

p𝒯2

𝜕𝒢
𝒢p̃ℐ1

⃒⃒⃒⃒
⃒
x̂

= −ℬ1R̂T
𝒯1

ℬ1R̂ℐ1
(2.134j)

𝜕
𝒯1
𝒯1

p𝒯2

𝜕𝒢
𝒢p̃ℐ2

⃒⃒⃒⃒
⃒
x̂

= ℬ1R̂T
𝒯1

ℬ1R̂ℐ1
𝒢R̂T

ℐ1
𝒢R̂ℐ2

(2.134k)

𝜕
𝒯1
𝒯1

p𝒯2

𝜕𝒢 �̃�ℐ2

⃒⃒⃒⃒
⃒
x̂

= −ℬ1R̂T
𝒯1

ℬ1R̂ℐ1
𝒢R̂T

ℐ1
𝒢R̂ℐ2

[︁
ℬ2R̂T

ℐ2

(︁
−ℬ2

ℬ2
p̂ℐ2

+ ℬ2
ℬ2

p̂𝒯2

)︁]︁
×

(2.134l)

𝜕
𝒯1
𝒯1

p𝒯2

𝜕ℬ2 �̃�ℐ2

⃒⃒⃒⃒
⃒
x̂

= ℬ1R̂T
𝒯1

ℬ1R̂ℐ1
𝒢R̂T

ℐ1
𝒢R̂ℐ2

[︁
ℬ2R̂T

ℐ2

(︁
−ℬ2

ℬ2
p̂ℐ2

+ ℬ2
ℬ2

p̂𝒯2

)︁]︁
×

(2.134m)

𝜕
𝒯1
𝒯1

p𝒯2

𝜕
ℬ2
ℬ2

p̃ℐ2

⃒⃒⃒⃒
⃒
x̂

= −ℬ1R̂T
𝒯1

ℬ1R̂ℐ1
𝒢R̂T

ℐ1
𝒢R̂ℐ2

(2.134n)

𝜕
𝒯1
𝒯1

p𝒯2

𝜕
ℬ2
ℬ2

p̃𝒯2

⃒⃒⃒⃒
⃒
x̂

= ℬ1R̂T
𝒯1

ℬ1R̂ℐ1
𝒢R̂T

ℐ1
𝒢R̂ℐ2

ℬ2R̂T
ℐ2

ℬ2R̂𝒯2
(2.134o)

(2.134p)

with ℬ{1,2}R̂𝒯{1,2}
= I.

2.9.7 Observability of states
A desirable feature of an estimator framework is an automatic self-calibration of system’s
extrinsic (position of sensor reference frame with respect to the body) and intrinsic, e.g.,
the focal length of a camera) states. Although the calibration could be performed a-
priori during the manufacturing process, it involves a lot of engineering effort and might be
a time-consuming process, that might result in unsatisfying accuracy and external factors,
such as aging, temperature, humidity, external mechanical forces, and might gravely bias
the factory calibration [105].

If the extrinsic (spatial relation) or intrinsic (internal parameters) of a sensor are as-
sumed to be perfectly known or the initial guess are not exact, a degradation in both,
the consistency and the accuracy of the filter estimates may be caused. Therefore, on-
line self-calibration or re-calibration during mission/operation of the system is desired.
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Despite spatial calibration, online temporal calibration, e.g., the offset between sensors
timestamps, is an indispensable or integral part of high-precision pose estimation algo-
rithms [36, 37, 45, 93] Despite being able to compensate calibration errors or biases in
the initial beliefs, additional self-calibration states lead to an increased state space and
computational complexity, while the number of observations/measurements remain the
same [57]. Therefore, it is recommended to aim at a minimal set of calibration parameters
and a minimal state representation.

A nonlinear system is classified as observable, if it is possible to compute a single initial
state x0 given a sequence of control inputs u(𝑡) and measurements z(𝑡) = ℎ(x(𝑡)). It is
globally observable if there exist no initial points x0

0 and x0
1 in state space with the same

input-output-maps for any control inputs. A system is defined as weekly observable the
there is no point x0

1 in the local neighborhood of x0
0 [57, 60].

The state variable x may or may not be directly observable by the measurement
and might be used to represent the memory of the system [60]. If the state variable is
not directly observable, the variable might be inferred from a local set of measurements,
meaning that it requires measurements obtained by the entire system, which again might
strongly depend on the operation performed. Further, normal operation might lead to
unobservable directions in the parameter space [105]. Assuming a system constituting of an
6-DoF IMU (accelerometer and gyroscope) and GNSS sensor that provides only absolute
position and given a known gravity vector, horizontal motion is required to recover the
absolute orientation about the gravity vector, e.g., yaw [57].

Consequently, not all components can be estimated as they lack of observability, e.g,
the pose between the body {ℬ} and IMU reference frame {ℐ} is generally not observable.
Estimating this transformation would lead to an over parameterization of the state space
that introduces unobservable states, which in turn may harm the convergence of the entire
state. Generally, this pose needs to be know a-priori and is constrained as constant/rigid.
This transformation is used to simplify the modeling of a modular estimation problem.
The sensor extrinsic between the body {ℬ} and the sensor {𝒮} reference frame might
suffer from poor observability, which might depend on the IMU characteristics, motion
performed, the system’s sensor configuration, and the characteristics of the sensor obser-
vations. In [57], Hausman et al. investigated on how to move in order to generate motions
that render the entire state space of the system observable. In this context, the aim of
classical trajectory/motion planning algorithms is, e.g, to minimize the total energy, which
might lead to unobservable subspaces of the system state.

Another important aspect is that discretization and linearization of continuous non-
linear system, induce additional error and lead to wrong observability results [57], see for
instance the well-known studies on EKF-SLAM [66] and EKF-based VIO [92]. In [66],
Huang et al. identified as fundamental root cause for inconsistencies a mismatch between
the dimension of observable subspaces between the nonlinear system and the linearized
system used in the EKF and introduced the first estimate Jacobian (FEJ)-EKF and the
observability-constrained (OC)-EKF, which were derived based on the nonlinear system’s
observability properties [67]. Meaning, that if a certain quantity is unobservable in the
actual nonlinear system, its should be unobservable in the linearized model as well [92].

In [92], Li and Mourikis performed the observability analysis on an EKF-based VIO
framework and proved that the same problem as in [66] appear. Theoretically, a visual-
inertial navigation system, constituting of an IMU and camera, that is navigation in space
with a known gravity vector but unknown landmark positions, has four unobservable
degrees of freedom. Three relating to the global (absolute) position and one corresponding
the rotation about the gravitation vector, i.e. global yaw, if z-axis is aligned with the
gravity vector. Erroneously, the rotation about the gravity vector is rendered observable
in the linearized system [92] and decreases the accuracy and degrades the consistency of
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the filter formulation.
Similarly, Huang et al. studied in [65] the consistency of CL in a multi-robot system

with relative pose measurements between robots from the perspective of observability and
proved that the linearized global multi-robot system has an observable subspace higher
than the underlying nonlinear global system. Again, the estimated covariances obtain
corrections where theoretically no information is available and leads to inconsistencies
in the estimates and it was shown that the linearization points for the Jacobians affects
the observability properties of the linearized system. Please note, that in EKF-based aided
INS where absolute information, for instance absolute position measurement, and sufficient
motion, i.e. excitation in at least 2 directions, is provided, the nonlinear and linearized
system is able to recover the absolute position, velocity, and orientation of the IMU.
Summarized, the observability properties of the system model play a major role in assessing
the estimator’s accuracy and consistency. It is essential to ensure, that the linearized
system has an observable subspace of the same dimension as the underlying nonlinear
system [65].

In general, it is highly recommended as initial step to perform a-priori an observability
analysis of the underlying nonlinear system to proper understand the behavior of the
method. In a second step, if the observability properties of the nonlinear system satisfies
the requirements, an observability analysis on the linearized system might be inevitable,
as discussed previously. Unfortunately, the analysis cannot be performed on integrated
and/or approximated state transition matrices. Due to their numerically nature, they are
not amenable to theoretical analysis, and analytical expression need to be found, otherwise
the observability of the linearized system cannot be guaranteed [93].

Nonlinear observability analysis

The observability of a linear or nonlinear system can be determined by performing the so-
called rank test on the observability matrix O, which should be equal to the dimension of
the state space. For nonlinear system, the observability matrix O is constructed using the
Lie derivatives of the sensor model(s) ℎ(x), which are defined recursively up to a certain
order without considering measurement noise v = 0 [57]. The 0-th Lie derivative is the
measurement model

Lℎ
0 = ℎ(x(𝑡)) (2.135)

while the next 𝑖-th Lie derivatives are constructed recursively by

Lℎ
𝑖+1 = 𝜕Lℎ

𝑖

𝜕𝑡
= 𝜕Lℎ

𝑖

𝜕x
𝜕x
𝜕t = 𝜕Lℎ

𝑖

𝜕x 𝑓(x,u), (2.136)

and allows constructing an observability matrix O(x,u) up to a certain order by computing
the Jacobian of the previous Lie derivatives with respect to the state ∇Lℎ

0 = 𝜕Lℎ
0

𝜕x

O𝑖(x,u) =
[︁
∇Lℎ

0 ;∇Lℎ
1 ; . . . ;∇Lℎ

𝑖

]︁
. (2.137)

The computation of the i-th order observability matrix allows making a binary assessment,
if the nonlinear system is weakly observable [60]

observable = rank(O𝑖(x,u)) ≥ dim(x) (2.138)

Note that this analysis neither quantifies how well the system is observable, nor does it
consider noise/perturbations of the system [57].

Despite these limitations, it is a systematic approach that can be processed symboli-
cally in tools like as MATLAB.
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Figure 2.13: Sensor activity: Given two sensors, an IMU for state propagation and an
exteroceptive sensor S for state correction. The sensors provide delayed measurement at
different rates, and it is assumed that the sources of the timestamps are synchronized. At
𝑡𝑐𝑢𝑟𝑟, the filter receives a sensor measurement, which relates to an event that falls between
two IMU measurements. In order to fuse that measurement, first, an interpolated (pseudo)
belief needs to be created. Second, the pseudo belief is corrected using the sensor measure-
ment. Third, all measurements in the measurement buffer after that event, are reprocessed
in order to propagate the correction forward in time.

2.9.8 Delayed Measurements
Each sensor measurement has a certain delay from the actual moment/event the infor-
mation was perceived by the sensor, until it is actually processed in the filter. Different
sensors can have individual reference times, meaning that all measurements need to be
related to a common reference time.

In a Kalman filter, a measurement needs to be associated to an a-priori belief of the
filter. In our ESEKF formulation, the state evolution happens periodically at the rate of
the IMU measurements, meaning that each processed IMU measurement will result in a
new (predicted) belief, as shown in Figure 2.13. We assume that the IMU measurements
have the least latency, such that there is always a more recent predicted state. If this
would not be the case, these update sensor measurements need to be buffered until a
more recent IMU measurement arrives. Since it is more likely that a timestamp of update
measurements falls between two IMU measurements, then exactly coincides with a single
IMU measurement, a synthetic state needs to be created by interpolating between two IMU
measurements and by performing a prediction step using that pseudo measurement. After
the correction was applied on the synthetic/interpolated state of the past, we need to redo
updates, in order to apply all changes that happened in the future of that measurement
event. In case of a nonlinear system, all Jacobians, e.g., in the propagation and update
steps, need to be re-linearized about a new linearization pint – the new best estimate.

To support delayed measurements, certain measurements and beliefs (mean and co-
variance) need to be buffered, e.g., in a ring buffer [149] with a fixed size or in a fixed time
horizon buffer [74], see Section 2.2.

Please note, that propagating corrected beliefs forward in time scales linearly with
the number of measurements to be re-applied, while the covariance propagation is com-
putationally more expensive than the mean propagation [5, 149]. To mitigate the costly
covariance propagation based on IMU measurements, Allak et al. proposed in [5] an ef-
ficient method for covariance propagation during recalculation of delayed measurements,
by applying pre-computed scattering factors using the star product. This renders the com-
putational complexity of IMU propagation invariant to the number of propagation steps
between filter updates, at the cost of approximations made as the scattering factors are
not re-linearized.



Chapter 3

Filter-based Distributed Collaborative State
Estimation

From Section 1.1, we observe that distributed state estimation is a key component of var-
ious research fields (target tracking, localization, etc.) with various solutions for different
problems. In this chapter, we study the problem of Collaborative State Estimation (CSE)
on a networked dynamic model with decoupled inputs and sparsely coupled outputs. We
investigate some algorithms and architectures that are used in the field of Collaborative
Localization (CL) and compare them in terms of their capabilities and properties. We
propose a novel filter-based algorithm for Distribued CSE (DCSE) which was published
in [76] and is particularly designed to address the problem of collaborative aided iner-
tial navigation. Furthermore, we evaluate the scalability and the filter credibility in Monte
Carlo simulations and on a real world dataset for MAVs. Parts of this chapter have already
been published in [73, 76].

3.1 Introduction

Definition 1 Collaborative State Estimation1 facilitates nodes of a heterogeneous net-
work, which are modeled as stochastic processes with decoupled dynamics, communica-
tion, and computation capabilities, to work/sense jointly/collaboratively by coupling their
outputs.

The aim of the collaboration is to improve the accuracy of individual’s states, and
thus, the global state, by exchanging information via communication, in order to achieve
a common goal or task. Wireless communication is needed when the nodes are spatially
distributed or moving in space in order to exchange, e.g., beliefs (mean and covariances),
correlations, unique identifiers, measurements, time synchronization messages, etc..

If nodes are non-stationary, meaning that the spatial constellation of them is changing,
the network can be seen as swarm organism with multiple non-rigid limbs/nodes that is
spreading and observing the environment at different places, while information is shared
wirelessly across the network [123]. By sharing information, the networks has – to a certain
extent – swarm intelligence, enabling the network to be more than the sum of its individual
nodes.

A self-aware swarm organism, acts based on the observed environment, leading to
information based swarm control, see e.g., [158], which is not covered in this thesis. We
investigate only open loop control performance, and thus, focusing only on the estimation
problem. Without loss of generality, all approaches that try to improve the observability

1Wiktionary: Latin collaboro, from con- (“with”) + laboro (“to work”): to work together with others.
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of the state space or to maximize information obtained from the environment, e.g., by
steering the swarm into information rich areas or by forming swarm constellations that
reduces e.g., the positional dilution of precision (PDOP), can be applied.

Collaboratively estimating states or performing observations jointly in such a wireless
sensor/robot network can significantly improve an individual’s estimate. This abrogates
the statistical independence of the involved nodes as it leads to (statistical) correlations
(coupling) between their estimates. Again, these dependencies need to be considered and
properly treated in order to obtain consistent estimates. Naively processed in a central-
ized fusion entity, tremendous challenges regarding the communication and computation
complexity are imposed, as the state space of the dynamic system is increasing linearly
with the number of agents.

Depending on the problem at hand, different collaborative estimation architectures
can be applied, while the major challenge remains: to preserve consistent estimates by
properly treating correlations between nodes. Further, a balance between the estimation
accuracy and the effort needed for communication, memory, computation, and book-
keeping/maintenance of correlations has to be found, as it directly impacts the scalability
of the system with respect to the number of nodes.

Joint observation among nodes differ from individual observations by relating an ob-
servation to multiple nodes’ states compared to just an individual node’s estimate. Joint
observations are generally exteroceptive ones, e.g., a relative position measurement be-
tween two moving robots. This measurement would require the estimated poses of both
robots from the moment the measurement was performed in the update step of the esti-
mator.

Joint observations are not limited to direct relative observation between nodes. A joint
observation could also be an observation of a commonly known object of interest, e.g.,
multiple robots are tracking jointly the position of a moving target2, see e.g., Mirzaei et
al. [108] or multiple robots are tracking jointly landmarks to obtain a globally consistent
representation of the environment [160].

As already mention in Chapter 1, the aim of this thesis is to perform filter-based
CSE fully distributed and with minimal overhead in size-varying groups/swarms of mobile
agents in order to improve the localization performance. Thus, DCSE can be regarded as
generalization of the Distributed Collaborative Localization (DCL) problem, that might
be extended to support mapping and target tracking. The proposed approaches for DCSE
could even be applied beyond robotics applications requiring estimation processes.

Due to the generalization made from the collaborative localization problem in mobile
robotics application to wireless sensor network, the terms agent or robot are interchange-
able with the term node, and the terms swarm or group are interchangeable with network.

Before presenting different filter-based DCSE architectures in Section 3.4, we briefly
define the CSE problem in Section 3.2. After that, our proposed DAH Collaborative State
Estimation (DAH-CSE) approach is presented in Section 3.3 and is evaluated on different
use cases in Section 3.5. Conclusion are made in Section 3.6.

Please note that the presented DCSE approaches within this chapter assume, that the
state space of individual nodes is not changing arbitrarily during mission and measure-
ments are received and processed without delay, and thus, they are received and processed
in correct order. Eliminating these limitations are the primary objectives and the motiva-
tion of the final chapter (see Chapter 7).

2If the target would have communication and processing capabilities, it would be able to treat the
target as a node of the collaborative estimation network and it would reduce the observation to two
direct relative observation between robots and the target. Note that this would simplify the distributed
collaborative estimation approaches as no consensus about multiple hypothesis of the tracked object’s belief
needs to be found, whereas in a centralized estimation architecture, it would make no difference as there
is globally only one belief relating to the target.
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3.2 The filter-based Collaborative State Estimation problem
In this section, we study the estimation problem in a setup of three agents performing CSE
(like in [121]), to provide details and challenges in filter-based CSE, as the cross-covariance
need to be handed properly for optimal estimation (given a linear problem, known dynamic
models, and signal noise characteristics) in the prediction step (Section 3.2.2), the private
(Section 3.2.3), and joint update steps (Section 3.2.4).

To visualize the influence of cross-covariance terms due to the output coupling of the
dynamic systems, a private observation on A1 (Section 3.2.3), a relative joint observa-
tion between A1 and A2 (Section 3.2.4) and the state propagation (Section 3.2.2) will be
analyzed based on a (global) full state estimator.

3.2.1 Network dynamics model
Consider a network of three interconnected agents, A𝑖, with 𝑖 = 1, . . . , 3, each of them
has a computational unit, while each system is dynamically decoupled and described by
an individual discrete-time linear stochastic process (see Equation (2.62)). In contrast
to the dynamics, the outputs of an arbitrary set of models are/can be coupled via joint
observation.

Assume that the physical process of an agent A𝑖 is represented as linear stochastic
system in the form

x𝑘
𝑖 = Φ𝑘|𝑘−1

𝑖𝑖 x𝑘−1
𝑖 + G𝑘−1

𝑖𝑖 w𝑘−1
𝑖 , (3.1a)

z𝑘
𝑖 = H𝑘

𝑖𝑖x
𝑘
𝑖 + v𝑘

𝑖𝑖, (3.1b)

z𝑘
𝑖,𝑗 = H𝑘

𝑖,𝑗

[︃
x𝑘

𝑖

x𝑘
𝑗

]︃
+ v𝑘

𝑖,𝑗 , (3.1c)

where x𝑖 is the state vector, and z𝑖 and z𝑖,𝑗 are output vectors. Φ𝑖𝑖 and G𝑖𝑖 are the
state transition and process noise coupling matrices, respectively. H𝑖𝑖 and H𝑖,𝑗 are the
measurement matrices for the private and joint observations, respectively. Please note
that the output coupling is not limited to pairwise observation. w𝑖 ∼ 𝒩 (0,W𝑖𝑖), and
v{𝑖𝑖,𝑖,𝑗} ∼ 𝒩

(︀
0,R{𝑖𝑖,𝑖,𝑗}

)︀
are the known process and observation noise, that are assumed to

be zero-mean white Gaussian with an associated covariance W𝑖𝑖 and R{𝑖𝑖,𝑖,𝑗}, respectively.
An agent’s belief (state) x𝑖 needs to be regarded as part of the global full state x

x =

⎡⎣x1
x2
x3

⎤⎦ ∼ 𝒩
⎛⎝⎡⎣x̂1

x̂2
x̂3

⎤⎦ ,
⎡⎣Σ11 Σ12 Σ13
∙ Σ22 Σ23
∙ ∙ Σ33

⎤⎦⎞⎠ . (3.2)

Therefore, the global dynamics of the swarm of 𝑁 agents can be represented in the
form

x𝑘 = Φ𝑘|𝑘−1x𝑘−1 + G𝑘−1w𝑘−1, (3.3a)

z𝑘 = H𝑘x𝑘 + v𝑘, (3.3b)

where z𝑘 =
[︁
z𝑘

1; . . . , z𝑘
𝑁

]︁
is the concatenation of measurement available at each agent at

𝑡𝑘, x𝑘 =
[︁
x𝑘

1 ; . . . ,x𝑘
𝑁

]︁
is the stacked state, w𝑘 =

[︁
w𝑘

1 ; . . . ,w𝑘
𝑁

]︁
and v𝑘 =

[︁
v𝑘

1; . . . ,v𝑘
𝑁

]︁
are

the concatenated zero-mean white Gaussian process and observation noise, respectively.
Similar to the assumptions made in the Schmidt-Kalman filter (see 2.8.3), the dynamics
of the individual agents are typically not linked/coupled with each other, meaning that
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the off-diagonal blocks of the state transition matrix and process noise matrix are zero.
Such that the matrices Φ = Diag ([Φ11; . . . ; Φ𝑁𝑁 ]) and W = Diag ([W11; . . . ; W𝑁𝑁 ]) are
obtained from the individual agents’ dynamics [145]. Similarly, the global measurement
matrix H = [H11, . . . ,H𝑁𝑁 ] is built from the individual agents’ measurement sensitivity
matrices.

3.2.2 Prediction/Propagation step
We aim at a Kalman filter formulation for the network of three agents, which is described
by the global dynamics in Equation (3.3). The prediction step of the global full state x is
defined as follows.

Assuming the discrete-time linear stochastic process is evolving with a sampling period
Δ𝑡 = 𝑡𝑘 − 𝑡𝑘−1, the estimated state and the state covariance evolves according to

x𝑘 = Φ𝑘|𝑘−1x𝑘−1 + G𝑘−1w𝑘−1, (3.4a)

x̂𝑘 = Φ𝑘|𝑘−1x𝑘−1, (3.4b)

Σ𝑘 = Φ𝑘|𝑘−1Σ𝑘−1Φ𝑘|𝑘−1T
+ Q𝑘−1, (3.4c)

with the process noise Q𝑘−1 = G𝑘−1W𝑘−1G𝑘−1T
.

Since we assume no kinematic and noise interference between agents3, their dynamics
and process error evolve independently. Therefore, the joint transition and process matrices
are typically found to be sparse

Φ𝑘|𝑘−1 =

⎡⎢⎣Φ𝑘|𝑘−1
11 0 0
0 Φ𝑘|𝑘−1

22 0
0 0 Φ𝑘|𝑘−1

33

⎤⎥⎦ , (3.5a)

Q𝑘−1 =

⎡⎢⎣Q𝑘−1
11 0 0
0 Q𝑘−1

22 0
0 0 Q𝑘−1

33

⎤⎥⎦ . (3.5b)

Assuming no cross-covariances between the agents, the propagated joint covariance is

Σ𝑘|𝑘−1 =

⎡⎢⎢⎣
Φ𝑘|𝑘−1

11 Σ𝑘−1
11 Φ𝑘|𝑘−1

11
T

+ Q𝑘−1
11 0 0

0 . . . 0
0 0 Φ𝑘|𝑘−1

33 Σ𝑘−1
33 Φ𝑘|𝑘−1

33
T

+ Q𝑘−1
33

⎤⎥⎥⎦ . (3.6a)

3A reasonable assumption in robotics applications, since agents are typically not physically connected/s-
trapped together. In case of multi-copter, we assume that the downwash turbulence created by individual’s
propulsion system is not influencing other agents.
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Once the agents are correlated, the cross-covariance are propagated as well

Σ𝑘 =

⎡⎣Φ11 0 0
0 Φ22 0
0 0 Φ33

⎤⎦𝑘|𝑘−1 ⎡⎣Σ11 Σ12 Σ13
Σ21 Σ22 Σ23
Σ31 Σ32 Σ33

⎤⎦𝑘−1 ⎡⎢⎣Φ11
T 0 0

0 Φ22
T 0+

0 0 Φ33
T

⎤⎥⎦
𝑘|𝑘−1

+

⎡⎣Q11 0 0
0 Q22 0
0 0 Q33

⎤⎦𝑘−1

=

⎡⎢⎢⎣Φ𝑘|𝑘−1
11 Σ𝑘

11Φ𝑘|𝑘−1
11

T
+ Q𝑘−1

11 Φ𝑘|𝑘−1
11 Σ𝑘

12Φ𝑘|𝑘−1
22

T
Φ𝑘|𝑘−1

11 Σ𝑘
13Φ𝑘|𝑘−1

33
T

Φ𝑘|𝑘−1
22 Σ𝑘

21Φ𝑘|𝑘−1
11

T
Φ𝑘|𝑘−1

22 Σ𝑘
22Φ𝑘|𝑘−1

22
T

+ Q𝑘−1
22 Φ𝑘|𝑘−1

22 Σ𝑘
23Φ𝑘|𝑘−1

33
T

Φ𝑘|𝑘−1
33 Σ𝑘

31Φ𝑘|𝑘−1
11

T
Φ𝑘|𝑘−1

33 Σ𝑘
32Φ𝑘|𝑘−1

22
T

Φ𝑘|𝑘−1
33 Σ𝑘

33Φ𝑘|𝑘−1
33

T
+ Q𝑘−1

33

⎤⎥⎥⎦ .
(3.6b)

Remark 5 This filter formulation assumes that all agents A𝑖, 𝑖 = 1, . . . , 3 perform the
state propagation step at the same point in time. In real world application, the propagation
is sometimes driven by a control input u or a proprioceptive sensor input (wheel encoder,
IMU). In a distributed system, we cannot assume that the sensor read-out is synchronized
and that, in the case of a heterogeneous system, the sampling rate is the same across
agents. If these assumptions are not fulfilled, interpolation techniques might be applied.
Another problem is the rate of propagation has to be performed, e.g, if it is based on the
IMU readings, it might be processed at a rate of, e.g., 10 Hz − 1 kHz. This would cause a
distributed propagation every few milliseconds. Depending on the size of the individual state
vector and the number of agents, a full connection with low latency and high throughput
is required.

3.2.3 Private update step
In general, a measurement/observation z is linearly related to the state x by the measure-
ment sensitivity-/output coupling matrix H in the form

z𝑘 = H𝑘x𝑘 + v𝑘, (3.7)

with an uncorrelated and additive measurement noise v𝑘 ∼ 𝒩 (0,R) (see Section 2.8.1).
An individual or private update step is performed in cases an exteroceptive mea-

surement is referring only to a single agent’s (ego-) state, meaning that the output of the
individual dynamic system is not interconnected to other dynamical systems of the swarm,
e.g., if a mobile robot obtains an absolute position measurement.

Definition 2 In a private observation, the measurement is linearly related (only) to the
states of an individual agent’s system, meaning that the output is just coupled with one
dynamic (sub)system.

Furthermore, we analyze the influence of cross-covariances Σ𝑖𝑗 between each robot,
based on the standard Kalman filter update (see Equation (2.65)) and show that observa-
tions on an individual agent have an impact on the other members of the swarm.

We assume that agent A1 receives a private measurements, meaning that H𝑡
1 ̸= 0. The

global and consequently spare measurement matrix is

H𝑘 =
[︁
H𝑘

1 0 0
]︁
. (3.8a)
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The global Kalman gain (2.65c)

K𝑘 =

⎡⎣Σ11 Σ12 Σ13
Σ21 Σ22 Σ23
Σ31 Σ32 Σ33

⎤⎦𝑘(−) ⎡⎢⎣H𝑘
1

T

0
0

⎤⎥⎦(︂[︁H𝑘
1 0 0

]︁⎡⎣Σ11 Σ12 Σ13
Σ21 Σ22 Σ23
Σ31 Σ32 Σ33

⎤⎦𝑘(−) ⎡⎢⎣H𝑘
1

T

0
0

⎤⎥⎦+ R𝑘

)︂−1

=

⎡⎢⎢⎣Σ𝑘(−)
11 H𝑘

1
T

Σ𝑘(−)
21 H𝑘

1
T

Σ𝑘(−)
31 H𝑘

1
T

⎤⎥⎥⎦(︁H𝑘
1Σ𝑘(−)

11 H𝑘
1

T
+ R𝑘

)︁−1
=

⎡⎢⎣K𝑘
1

K𝑘
2

K𝑘
3

⎤⎥⎦
(3.8b)

The corrected covariance matrix Σ𝑘(+) is then (2.65f)

Σ𝑘(+) = (I−K𝑘H𝑘)Σ𝑘(−) =

⎡⎢⎣I−K𝑘
1H𝑘

1 0 0
−K𝑘

2H𝑘
1 I 0

−K𝑘
3H𝑘

1 0 I

⎤⎥⎦Σ𝑘(−) (3.8c)

which results in the following updated covariance and cross-covariance blocks {Σ𝑖𝑗 : 𝑖, 𝑗 =
1, . . . , 3}

Σ𝑘(+)
11 = (I−K𝑘

1H𝑘
1)Σ𝑘(−)

11

Σ𝑘(+)
12 = (I−K𝑘

1H𝑘
1)Σ𝑘(−)

12

Σ𝑘(+)
13 = (I−K𝑘

1H𝑘
1)Σ𝑘(−)

13

Σ𝑘(+)
21 = −K𝑘

2H𝑘
1Σ𝑘(−)

11 + Σ𝑘(−)
21

Σ𝑘(+)
22 = −K𝑘

2H𝑘
1Σ𝑘(−)

12 + Σ𝑘(−)
22

Σ𝑘(+)
23 = −K𝑘

2H𝑘
1Σ𝑘(−)

13 + Σ𝑘(−)
23

Σ𝑘(+)
31 = −K𝑘

3H𝑘
1Σ𝑘(−)

11 + Σ𝑘(−)
31

Σ𝑘(+)
32 = −K𝑘

3H𝑘
1Σ𝑘(−)

12 + Σ𝑘(−)
32

Σ𝑘(+)
33 = −K𝑘

3H𝑘
1Σ𝑘(−)

13 + Σ𝑘(−)
33

(3.8d)

The residual is
r𝑘 = z𝑘 �H𝑘x̂𝑘(−) (3.8e)

The global full state is corrected by

x̂𝑘(+) =

⎡⎢⎣x̂𝑘(+)
1

x̂𝑘(+)
2

x̂𝑘(+)
3

⎤⎥⎦ =

⎡⎢⎣x̂𝑘(−)
1

x̂𝑘(−)
2

x̂𝑘(−)
3

⎤⎥⎦+

⎡⎢⎣K𝑘
1

K𝑘
2

K𝑘
3

⎤⎥⎦ r𝑘 (3.8f)

If the individual systems are independent (has no cross-covariance terms between
agents) the above updates reduces, as expected, to an update on the individual agent:

Σ𝑘(+)
11 = (I−K𝑘

1H𝑘
1)Σ𝑘(−)

11 (3.9a)

x̂𝑘(+)
1 = x̂𝑘(−)

1 �K𝑘
1r𝑘 (3.9b)
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If two agents A1 and A2 are correlated (Σ12 = ΣT
21 ̸= 0) then the global belief is updated

by

Σ𝑘(+)
11 = (I−K𝑘

1H𝑘
1)Σ𝑘(−)

11

Σ𝑘(+)
12 = (I−K𝑘

1H𝑘
1)Σ𝑘(−)

12

Σ𝑘(+)
21 = −K𝑘

2H𝑘
1Σ𝑘(−)

11 + Σ𝑘(−)
21

Σ𝑘(+)
22 = −K𝑘

2H𝑘
1Σ𝑘(−)

12 + Σ𝑘(−)
22

(3.10a)

x̂𝑘(+)
1 = x̂𝑘(−)

1 �K𝑘
1r𝑘

x̂𝑘(+)
2 = x̂𝑘(−)

2 �K𝑘
2r𝑘

(3.10b)

which means, if individual agents are correlated, an observation on any of them inherently
corrects/influences the estimates of the other correlated ones.

Remark 6 Aiming at a consistent DCSE, the impact of inter-agent correlations need
to be considered and requires information exchange between agents for each individual
observation.

3.2.4 Joint update step
A joint/collective update step is performed, in cases an exteroceptive observation is re-
ferring to multiple agents (ego-) beliefs, meaning that the output of multiple dynamic
systems are interconnected. Those agents are denoted as so-called participants, while the
other agents of the swarm are denoted as non-participants. A joint observation is for
instance, a relative pose observation from a mobile robot A1 to another robot A2.

Definition 3 In a joint observation, the measurement is linearly related to states of mul-
tiple agents’ systems, meaning that the output of an arbitrary sets of dynamic models is
coupled.

A set of so-called participants P is defined as

P := {P𝑖 ∈ A|1, . . . , 𝑃}, (3.11)

while the set of non-participants is defined as

P̄ := A ∖ P. (3.12)

Assuming a joint measurement between agent A1 and A2, meaning that H𝑘
1 ̸= 0 and

H𝑘
2 ̸= 0, the resulting global and sparse measurement matrix is

H𝑘 =
[︁
H𝑘

1 H𝑘
2 0

]︁
. (3.13a)

The global Kalman gain (2.65c) is

K𝑘 =

⎡⎣Σ11 Σ12 Σ13
Σ21 Σ22 Σ23
Σ31 Σ32 Σ33

⎤⎦𝑘(−) ⎡⎢⎣H𝑘
1

T

H𝑘
2

T

0

⎤⎥⎦(︂[︁H𝑘
1 H𝑘

2 0
]︁⎡⎣Σ11 Σ12 Σ13

Σ21 Σ22 Σ23
Σ31 Σ32 Σ33

⎤⎦𝑘(−) ⎡⎢⎣H𝑘
1

T

H𝑘
2

T

0

⎤⎥⎦+ R𝑘

)︂−1

=

⎡⎢⎢⎣Σ11H𝑘
1

T
+ Σ𝑘(−)

12 H𝑘
2

T

Σ21H𝑘
1

T
+ Σ𝑘(−)

22 H𝑘
2

T

Σ31H𝑘
1

T
+ Σ𝑘(−)

32 H𝑘
2

T

⎤⎥⎥⎦(︁S𝑘
)︁−1

=

⎡⎢⎣K𝑘
1

K𝑘
2

K𝑘
3

⎤⎥⎦
(3.13b)
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with

S𝑘 =
(︁

H𝑘
1Σ𝑘(−)

11 + H2Σ𝑘(−)
21

)︁
H𝑘

1
T

+
(︁

H𝑘
1Σ𝑘(−)

12 + H𝑘
2Σ𝑘(−)

22

)︁
H𝑘

2
T

+ R𝑘 (3.13c)

The corrected a-posteriori covariance matrix Σ𝑘(+) is then (2.65f)

Σ𝑘(+) =
(︁

I−K𝑘H𝑘
)︁

Σ𝑘(−) =

⎡⎢⎣I−K𝑘
1H𝑘

1 −K𝑘
1H𝑘

2 0
−K𝑘

2H𝑘
1 I−K𝑘

2H𝑘
2 0

−K𝑘
3H𝑘

1 −K𝑘
3H𝑘

2 I

⎤⎥⎦Σ𝑘(−) (3.13d)

which results in the following updated covariance and cross-covariance blocks {Σ𝑘(+)
𝑖𝑗 :

𝑖, 𝑗 = 1, . . . , 3}

Σ𝑘(+)
11 = (I−K𝑘

1H𝑘
1)Σ𝑘(−)

11 −K𝑘
1H𝑘

2Σ𝑘(−)
21

Σ𝑘(+)
12 = (I−K𝑘

1H𝑘
1)Σ𝑘(−)

12 −K𝑘
1H𝑘

2Σ𝑘(−)
22

Σ𝑘(+)
13 = (I−K𝑘

1H𝑘
1)Σ𝑘(−)

13 −K𝑘
1H𝑘

2Σ𝑘(−)
23

Σ𝑘(+)
21 = −K𝑘

2H𝑘
1Σ𝑘(−)

11 − (I−K𝑘
2H𝑘

2)Σ𝑘(−)
21

Σ𝑘(+)
22 = −K𝑘

2H𝑘
1Σ𝑘(−)

12 − (I−K𝑘
2H𝑘

2)Σ𝑘
22

Σ𝑘(+)
23 = −K𝑘

2H𝑘
1Σ𝑘(−)

13 − (I−K𝑘
2H𝑘

2)Σ𝑘
23

Σ𝑘(+)
31 = −K𝑘

3H𝑘
1Σ𝑘(−)

11 −K𝑘
3H𝑘

2Σ𝑘(−)
21 + Σ𝑘(−)

31

Σ𝑘(+)
32 = −K𝑘

3H𝑘
1Σ𝑘(−)

12 −K𝑘
3H𝑘

2Σ𝑘(−)
22 + Σ𝑘(−)

32

Σ𝑘(+)
33 = −K𝑘

3H𝑘
1Σ𝑘(−)

13 −K𝑘
3H𝑘

2Σ𝑘(−)
23 + Σ𝑘(−)

33

(3.13e)

The residual is
r𝑘 = z𝑘 �

[︁
H𝑘

1 H𝑘
2 0

]︁
x̂𝑘(−) (3.13f)

The corrected a-posteriori global state is

x̂𝑘(+) =

⎡⎢⎣x̂𝑘(+)
1

x̂𝑘(+)
2

x̂𝑘(+)
3

⎤⎥⎦ =

⎡⎢⎣x̂𝑘(−)
1

x̂𝑘(−)
2

x̂𝑘(−)
3

⎤⎥⎦�
⎡⎢⎣K𝑘

1
K𝑘

2
K𝑘

3

⎤⎥⎦ r𝑘 (3.13g)

If the system has only cross-covariances between agent A1 and A2 then a-posteriori be-
lief is corrected by

Σ𝑘(+)
11 = (I−K𝑘

1H𝑘
1)Σ𝑘

11 −K𝑘
1H𝑘

2Σ𝑘
21

Σ𝑘(+)
12 = (I−K𝑘

1H𝑘
1)Σ𝑘

12 −K𝑘
1H𝑘

2Σ𝑘
22

Σ𝑘(+)
21 = −K𝑘

2H𝑘
1Σ𝑘

11 − (I−K𝑘
2H𝑘

2)Σ𝑘
21

Σ𝑘(+)
22 = −K𝑘

2H𝑘
1Σ𝑘

12 − (I−K𝑘
2H𝑘

2)Σ𝑘
22

(3.14a)

and

x̂𝑘(+)
1 = x̂𝑘

1 �K𝑘
1r

x̂𝑘(+)
2 = x̂𝑘

2 �K𝑘
2r

(3.14b)

If correlations to agent A3 exist, a correction on the full belief needs to be performed.

Lemma 1 Corrections are obtained on statistically independent agents’ states in the course
of filter update steps, if any of them are indirectly correlated.
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Proof: Assuming three agents A{1,2,3} and that two states, x2 and x3, are corre-
lated, while x1 is independent from the others. By performing a joint observation (see
Equation (3.13)) incorporating the A1 and A2, assuming per definition H{1,2} ̸= 0, then
the Kalman gain K𝑘

3 ̸= 0 and a-posteriori belief of the non-participating agent A3 obtains
a correction x𝑘(+)

3 ̸= x𝑘(−)
3 .

Lemma 2 Correlations between independent agents’ states are obtained in the course of
filter update steps, if any of them are indirectly correlated.

Proof: Assuming three agents A{1,2,3} and that two states, x2 and x3, are corre-
lated (Σ23 ̸= 0), while x1 is independent from the others (Σ{12,13} = 0). By performing
a joint observation (see Equation (3.13)) incorporating the A1 and A2, assuming per defi-
nition H{1,2} ̸= 0, then a-posteriori belief x(+)

1 of A1 is correlated with to the two states
(Σ(+)

{12,13} ̸= 0).

Remark 7 Aiming at a consistent DCSE, all beliefs and cross-covariances between non-
participating but correlated agents to the participating ones are needed. In the worst case,
it would require all-to-all communication during processing the joint observation.

3.2.5 Generalized decoupled update step
Private and joint observations are technically the same, while later relates, in addition
to the local state estimate, to estimates from one or multiple other agents. Therefore, we
can distinguish between participants (with the subscript 𝑝) and non-participants (with the
subscript 𝑜 for “others”).

The generalized decoupled update step according to the Kalman filter (see Equation (2.65))
can be computed for a set of participants P and non-participants P̄ as follows. For legibility
we will neglect the discrete time index {}𝑘.

The stacked/partitioned random variable is in the form

x =
[︂
x𝑝

x𝑜

]︂
, (3.15a)

while x𝑝 is a joint belief of participants, e.g., constituting of A𝑖’s and A𝑗 ’s belief xT
𝑝 =[︁

xT
𝑖 xT

𝑗

]︁
and x𝑜 a joint belief of others.

An the corresponding partitioned joint covariance is given by

Σ𝑘 =
[︂
Σ𝑝𝑝 Σ𝑝𝑜

ΣT
𝑝𝑜 Σ𝑜𝑜

]︂𝑘

, (3.15b)

while the participants might be correlated by Σ𝑝𝑜 ̸= 0 with any of the non-participating
agents A𝑜 ∈ P̄.

Per definition the states of non-participants is not related to the observation, meaning
that H𝑜 = 0. Consequently, the partitioned measurement sensitivity matrix in the form

H =
[︀
H𝑝 0

]︀
. (3.15c)

The measurement residual is

r = z�
[︀
H𝑝 0

]︀ [︃x̂(−)
𝑝

x̂(−)
𝑜

]︃
= z�H𝑝x̂(−)

𝑝 (3.15d)



3. Filter-based Distributed Collaborative State Estimation 70

The partitioned Kalman gain is

K =
[︂
K𝑝

K𝑜

]︂
=
[︃

Σ(−)
𝑝𝑝 HT

𝑝

Σ(−)
𝑝𝑜 HT

𝑝

]︃(︁
S𝑘
)︁−1

, (3.15e)

with the innovation covariance S𝑘

S𝑘 = H𝑝Σ(−)
𝑝𝑝 HT

𝑝 + R, (3.15f)

and R being the measurement noise covariance.
The partitioned a posteriori covariance is

Σ(+) =
[︃

(I−K𝑝H𝑝)Σ(−)
𝑝𝑝 −K𝑝 (I−K𝑝H𝑝)Σ(−)

𝑝𝑜

∙ −K𝑜H𝑝Σ(−)
𝑝𝑜 + Σ(−)

𝑜𝑜

]︃
(3.15g)

The a posteriori mean x̂(+) is

x̂(+) =
[︃

x̂(+)
𝑝

x̂(+)
𝑜

]︃
=
[︃

x̂(−)
𝑝 �K𝑝r

x̂(−)
𝑜 �K𝑜r

]︃
, (3.15h)

3.2.6 Analysis of joint observation and properties
In past decades, the effect of different relative observations on the localization accuracy in
a swarm of agents was studied in-depth.

In [122, 126], Roumeliotis and Rekleitis, studied the improvement in localization ac-
curacy per additional agent as the size of swarm increases and provided an analytical
expression for the theoretical upper bound on the position uncertainty increase rate in
case of a missing absolute information. Meaning that the entire swarm is drifting globally,
since only odometry and only relative position measurements are obtained. Two interest-
ing findings were made: First, the growth-rate of the uncertainty is inversely proportional
to the number of agents. Therefore, the contribution of each additional agent follows a law
of diminishing return. Second, the rate of growth depends only on the number of agents
and odometric uncertainty, and not on the accuracy of the relative position measurements.

In [101] and [102], Martinelli et al. investigated in the effects when a swarm of agents
is capable of simultaneously observing one another in a EKF formulation based on the
work of Roumeliotis and Bekey [121]. Different relative observation where studied: relative
bearing, relative distance, and relative orientation. They showed and proved that relative
bearing provides more information than distance and orientation observations.

Later in [109], Mourikis and Roumeliotis studied the localization performance and un-
certainty growth given relative position measurement graphs (RPMG) of different topolo-
gies. In [111], they investigated on the upper bound analysis for collaborative SLAM.
In [108], Mirzaei et al. studied the problem of determining the upper bounds for the co-
variance of the position estimates in CLATT. This analysis also unveiled that the agents’
position estimates are always better when, in addition to inter-agent measurements, the
agents fuse agent-to-target measurements.

These studies give important insights and propositions, that are applicable for dis-
tributed CSE. Important insights from those studies are that (i) even if one estimator
observes absolute position information, e.g., provided by a GNSS, the position informa-
tion of all agents in the swarm remain bounded and converge, (ii) the agent equipped with
the most precise sensors has the greatest impact on the overall accuracy of the swarm, and
(iii) upper bounds for the covariance can be determined, therefore, allowing to predict the
worst-case performance of a swarm with a particular sensor suite.
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3.2.7 Conclusion
The ability to assume that individual agent’s dynamic system are not coupled, see Equa-
tion (3.5), is a fundamental pillar on which DCSE is built on and allows us to propose
various decoupling strategies as described later in Section 3.4.

The challenge in Distributed Collaborative Localization (DCL) is a decoupled, decen-
tralized architecture that performs equivalently to a joint centralized solution (denoted as
exact solution).

Definition 4 A filter formulation that provides (temporary) equal estimates as a cen-
tralized filter formulation, which is operating on a global full state in every filter step, is
denoted as exact.

3.3 DCSE based on a Distributed Approximated History (DCSE-DAH)

In this section, we describe our DCSE-DAH approach [76] to address the DCSE problem
in an approximated/inexact way, which is an extension to the DCSE-DACC approach,
that was proposed by Luft et al. in [94, 95], and allows us to reduce the maintenance effort
for factorized cross-covariances therein.

3.3.1 Introduction
Recent work by Luft et al. in [94, 95] and ourselves [73] have shown that communication
is just required for joint observations and that the communication complexity in pairwise
joint observations can be reduced to 𝒪(1). Yet, the local maintenance effort for interdepen-
dencies (i.e. inter-agent cross-covariances) still increases linearly with the number of met
agents. This renders the DCSE based on Distributed Approximated Cross-Covariances
(DCSE-DACC) approach [95] ill-suited for large swarms and long-duration missions with
many encounters.

Therefore, the primary motivation for our DCSE-DAH approach is the aim for a con-
stant complexity 𝒪(1) in both, maintenance and communication, with respect to number
of agents in the swarm.

In aided-inertial navigation systems, the state propagation is typically performed at a
rate of the IMU which is mostly above 100 Hz. Not only the state, but also all interde-
pendencies due to cross-correlations with met agents have to be propagated at this rate.
The more agents are correlated, the more maintenance is required, even after not seeing
each other for a long time and hinders the scalability with respect to the number of met
agents.

To overcome that issue, we propose to keep locally just (i) the most recent factorized
cross-covariance between agents, (ii) a timestamp of the event, and (iii) a sliding win-
dow buffer ℬ keeping track of the last corrections. The factorized cross-covariance and
timestamp can, e.g., be stored in a dictionary Dict accessed via the other agent’s ID.
Meaning that the DCSE-DAH approach is restoring the dated cross-correlation between
agents at the moment they meet again as an extension to DCSE-DACC. Our experiments
in Section 3.5 manifest the improvement while accomplishing the same accuracy.

As DCSE-DACC and DCSE-DAH operate only on a subset of swarm agents’ beliefs,
we denote the filter steps as isolated, emphasizing that they are performed isolated from
the rest of the swarm.

3.3.2 Isolated Propagation step
This approach assumes that the beliefs/states of the individual nodes/agents can be pre-
dicted independently. Meaning that the prediction model (e.g., a motion model) allows an
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independent state transition and that the distributed agents do not require information
about the latest cross-covariance of the swarms nor the current global full-state, while
they are predicting.

One of the most trivial solutions to avoid communications between agents while they
perform their state propagation steps, e.g., based on a control input or proprioceptive
sensor readings, can be obtained by a delayed cross-covariance prediction.

In [121, 123], Roumeliotis and Bekey proposed in their approach, which we term DCSE-
DP, to factorize cross-covariances between agents and to exploit the symmetry of the
covariance matrix, in order to perform the state propagation step fully distributed, while
it is possible to restore cross-covariances between agents exactly.

As covariance matrices are symmetric Σ𝑖𝑗 = ΣT
𝑗𝑖, the information about the cross-

covariances between agents is kept redundantly. The lower- or upper-triangular compo-
nents can be restored exploiting the symmetry of full state’s covariance

Σ𝑗𝑖 =
(︀
Σ𝑖𝑗

)︀T
, {𝑖, 𝑗} := 1, . . . , 𝑁, 𝑖 ̸= 𝑗. (3.16)

Therefore, the upper-right triangular matrix hold basically the same information as
the lower-left triangular matrix, e.g, in case of three agents

Σ =

⎡⎣Σ11 Σ12 Σ13
ΣT

12 Σ22 Σ23
ΣT

13 ΣT
23 Σ33

⎤⎦ =

⎡⎣Σ11 Σ12 Σ13
∙ Σ22 Σ23
∙ ∙ Σ33

⎤⎦ . (3.17)

In [121], it was proposed to factorize blocks of the upper-triangular cross-covariance
by performing a singular value decomposition (SVD)

Σ𝑖𝑗 = U𝑖𝑗S𝑖𝑗VT
𝑖𝑗 =

(︀
U𝑖𝑗S𝑖

)︀ (︀
V𝑖𝑗S𝑗

)︀T = 𝒮𝑖𝑗𝒮
T
𝑗𝑖, (3.18)

with diagonal matrix of eigenvalues S𝑖𝑗 , and the diagonal matrices S𝑖 and S𝑗 such that
S𝑖𝑗 = S𝑖S

T
𝑗 , e.g., by S𝑗 = I and S𝑖 = S𝑖𝑗 . 𝒮 is a so-called cross-covariance factor.

As proposed by Luft et al. in [94], one can avoid the SVD – at the cost of more memory
needed to store the factors, if the dimensions of individual agents’ states are different in
size – by decomposing the cross-covariance Σ𝑖𝑗 = 𝒮𝑖𝑗

(︀
𝒮𝑗𝑖

)︀T into 𝒮𝑖𝑗 = Σ𝑖𝑗 and 𝒮𝑗𝑖 = I𝑛×𝑛

with 𝑛 = dim(x𝑗).
By inspecting Equation (3.6b), cross-covariances can be propagated from a timestamp

𝑡𝑚 to a timestamp 𝑡𝑘 by
Σ𝑘

𝑖𝑗 = Φ𝑘|𝑚
𝑖𝑖 Σ𝑚

𝑖𝑗

(︁
Φ𝑘|𝑚

𝑗𝑗

)︁T
(3.19)

In case of a factorized covariance matrix of the global full state of, e.g., three agents,
is propagated as

Σ𝑘 =

⎡⎢⎢⎢⎣
Φ𝑘|𝑚

11 Σ𝑚
11Φ𝑘|𝑚

11
T

+ Q𝑚
11 Φ𝑘|𝑚

11 𝒮
𝑚
12

(︁
Φ𝑘|𝑚

22 𝒮
𝑚
21

)︁T
Φ𝑘|𝑚

11 𝒮
𝑚
13

(︁
Φ𝑘|𝑚

33 𝒮
𝑚
31

)︁T

∙ Φ𝑘|𝑚
22 Σ𝑚

22Φ𝑘|𝑚
22

T
+ Q𝑚

22 Φ𝑘|𝑚
22 𝒮

𝑚
23

(︁
Φ𝑘|𝑚

33 𝒮
𝑚
32

)︁T

∙ ∙ Φ𝑘|𝑚
33 Σ𝑚

33Φ𝑘|𝑚
33

T
+ Q𝑚

33

⎤⎥⎥⎥⎦ . (3.20)

From above, factorized cross-covariances can be propagated from a timestamp 𝑡𝑚 to a
timestamp 𝑡𝑘 by

Σ𝑘
𝑖𝑗 = Φ𝑘|𝑚

𝑖𝑖 𝒮
𝑚
𝑖𝑗

(︁
Φ𝑘|𝑚

𝑗𝑗 𝒮
𝑚
𝑗𝑖

)︁T
. (3.21)

In order to obtain a fully distributed propagation step, each agent A𝑖 needs to maintain
a set of cross-covariance factors 𝒮𝑖𝑗 , 𝑗 = 1, . . . , 𝑁, 𝑗 ̸= 𝑖 which can be (uniquely) associated
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to another agent A𝑗 , e.g., in a dictionary (see Section 2.2) 𝒞𝑖 := Dict{𝒮𝑖𝑗} that is accessed
via the other agent’s unique ID idA𝑗

by

𝒞𝑖

(︁
idA𝑗

)︁
= 𝒮𝑖𝑗 . (3.22)

In DCSE-DP [121], this set of cross-covariance factors needs to be propagated in each
(ego-) propagation step by

𝒞𝑖

(︁
idA𝑗

)︁𝑘
= Φ𝑘|𝑚

𝑖𝑖 𝒞𝑖

(︁
idA𝑗

)︁𝑚
, 𝑗 = 1, . . . , |A|, 𝑗 ̸= 𝑖. (3.23)

In DCSE-DACC [95], this set is limited per agent A𝑖 to a set of met agents M𝑖 – those
who participated in joint observations – only. According to the remark 7, this leads to an
inexact (see Definition 4) global full state. As only subset of cross-covariance factors is
considered, we denote this distributed, but inexact propagation step as isolated propagation
step.

𝒞𝑖

(︁
idA𝑗

)︁𝑘
= Φ𝑘|𝑚

𝑖𝑖 𝒞𝑖

(︁
idA𝑗

)︁𝑚
, 𝑗 = 1, . . . , |A|, 𝑗 ̸= 𝑖, A𝑗 ∈M𝑖 (3.24)

Despite being inexact, the isolated propagation step is based on two simplifications made.

Lemma 3 Correlations between independent agents’ states can only be obtained in the
curse of filter update steps, in case of decoupled system inputs (no state, no control input
coupling and no process noise coupling).

Proof: If two agents A𝑖 and A𝑗 beliefs x𝑖 and x𝑗 are uncorrelated prior the prop-
agation step at 𝑡𝑘, meaning that their cross-covariance has a block zero entries Σ𝑘

𝑖𝑗 = 0
(Σ𝑖𝑗 = ΣT

𝑖𝑗) in the global full state’s covariance, and the network dynamics model’s state
transition, input coupling, and process noise matrices only have block diagonal entries (cor-
responding only the individual agent’s belief) by {Φ,Γ,G}𝑖𝑗 = 0, {𝑖, 𝑗} = 1, . . . , |A|, 𝑖 ̸= 𝑗,
then the beliefs remain independent after the prediction step Σ𝑘+1

𝑖𝑗 = 0, following Equa-
tion (3.4).

In large swarms, the number of met agents is typically smaller than the total number
of agents |M𝑖| << |A|, meaning that the maintenance effort in the propagation step for
factorized cross-covariances in DCSE-DACC is lower than in CCSE, while in the limit, the
maintenance effort of both strategies has a complexity of 𝒪(|A|).

Our inspiration to achieve a constant maintenance complexity stem from the observa-
tion that, in case no intermittent corrections happened, the decomposed covariances can
be propagated exactly over a wider time span by applying two transition matrix series
Φ̄𝑘|𝑚

{𝑖𝑖,𝑗𝑗} from 𝑡𝑚 to 𝑡𝑘. A state transition matrix series Φ̄𝑘|𝑚 from 𝑡𝑚 to 𝑡𝑘 is obtained by
accumulating consecutive state transition matrices in the form

Φ̄𝑘|𝑚
𝑖𝑖 =

𝑘∏︁
𝑖=𝑚

Φ𝑖𝑖
𝑖|𝑖−1. (3.25)

A propagated cross-covariance at 𝑡𝑘 is obtained by applying Φ̄𝑘|𝑚
{𝑖𝑖,𝑗𝑗} in the form

Σ𝑘
𝑖𝑗 = Φ̄𝑘|𝑚

𝑖𝑖 𝒮
𝑚
𝑖𝑗

(︁
Φ̄𝑘|𝑚

𝑗𝑗 𝒮
𝑚
𝑗𝑖

)︁T
. (3.26)

To achieve a constant maintenance complexity for factorized cross-covariances in the
propagation step, we propose to store a transition matrix Φ𝑖𝑖 – a so-called correction term –
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in a sliding time-horizon buffer (see Section 2.2) Hist for corrections ℬ𝑖 := Hist{{Φ𝑖𝑖,ϒ𝑖𝑖,Λ𝑖𝑖}}
on each agent A𝑖 (the terms ϒ𝑖𝑖 and Λ𝑖𝑖 are defined in Section 3.3.3)

ℬ𝑖

(︁
𝑡𝑘
)︁

= Φ𝑘
𝑖𝑖. (3.27)

Once a cross-covariance factor is needed again, e.g., during an isolated joint update
at 𝑡𝑘 with another agent A𝑗 , the dated cross-covariance factors stemming from 𝑡𝑚 can
be restored exactly by applying an accumulated state correction matrix M4 using the
correction terms of the correction buffer ℬ𝑖 by

𝒮𝑚
𝑖𝑗 = 𝒞𝑖(idA𝑗

), (3.28a)

M𝑘|𝑚
𝑖𝑖 =

𝑘∏︁
𝑙=𝑚

ℬ𝑖

(︁
𝑡𝑙
)︁
, (3.28b)

and
𝒮𝑘

𝑖𝑗 = M𝑘|𝑚
𝑖𝑖 𝒮

𝑚
𝑖𝑗 . (3.28c)

The steps of Equation (3.28) (see Algorithm 3.7) need to be performed on A𝑗 to obtain
𝒮𝑘

𝑗𝑖 = M𝑘|𝑚
𝑗𝑗 𝒮

𝑚
𝑗𝑖 . This allows to restore Σ𝑘

𝑖𝑗 by applying Equation (3.18) and to obtain Σ𝑘
𝑗𝑖

given the symmetry in Equation (3.16).

3.3.3 Isolated Decoupled Observations
Starting from the generalized decoupled update step (see Section 3.2.5), we will describe
approximations made to achieve isolated decoupled observations in the DCSE-DACC and
DCSE-DAH approaches.

Definition 5 Isolated decoupled observations require communication only among partic-
ipants and the communication complexity scales linearly with the number of participating
agent 𝒪(𝑃 ) (two links per participant are needed), while in general |P| << |A|.

We assume that the computation of an observation is performed on an interim master
agent A𝑖 ∈ P, e.g., based on the lowest integer ID among participants5.

In order to achieve this isolated communication constraint, we assume that the interim
master obtains the a-priori beliefs and cross-covariance factors from all participants, which
allows us to recover the joint belief of participants at 𝑡𝑘. Once the interim master A𝑖 obtains
the noisy coupled measurement z𝑘, it requests from the participants the a-priori ego-belief
and cross-covariance factors relating to the participants P. While in DCSE-DACC the a-
priori cross-covariance factors relating to 𝑡𝑘 would be already available in the dictionary
𝒞𝑝, 𝑝 ∈ P, in DCSE-DAH the dated factors need to be first forward propagated using the
accumulated state correction matrix series obtained in the individuals correction buffers
ℬ𝑝, 𝑝 ∈ P (see Equation (3.28) and Algorithm 3.7). This step is performed distributed (in
parallel) on the participants.

After the interim master agent A𝑖 obtained the set of a-priori beliefs {x̂𝑘(−)
𝑝 Σ𝑘(−)

𝑝 , 𝑝 ∈
P} and factorized cross-covariances {𝒮𝑘(−)

𝑚𝑛 , {𝑚,𝑛} ∈ P,𝑚 ̸= 𝑛}. The upper triangular
cross-covariance block entries can be restored by

Σ𝑘(−)
𝑚𝑛 = 𝒮𝑘(−)

𝑚𝑛

(︁
𝒮𝑘(−)

𝑛𝑚

)︁T
, {𝑚,𝑛} ∈ P,𝑚 ̸= 𝑛. (3.29a)

4We named it on purpose accumulated state correction matrix instead of state transition matrix series,
since we will later introduce other correction terms for private and joint update steps in Section 3.3.3.

5The primary motivations are (i) to reduce the complexity and improve the readability of the algorithm
and (ii) to avoid additional communication and process synchronization in the update step.
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The lower triangular cross-covariance blocks are obtained by symmetry

Σ𝑘(−)
𝑛𝑚 =

(︁
Σ𝑘(−)

𝑚𝑛

)︁T
, {𝑚,𝑛} ∈ P,𝑚 ̸= 𝑛. (3.29b)

Finally, all blocks need to be stacked to obtain the joint belief of participants x𝑝 ∼
𝒩
(︀
x̂𝑝,Σ𝑝𝑝

)︀
(see Equation (3.2)) in the form

x =

⎡⎢⎣x1
...

x𝑃

⎤⎥⎦
𝑘(−)

∼ 𝒩

⎛⎜⎝
⎡⎢⎣ x̂1

...
x̂𝑃

⎤⎥⎦ ,
⎡⎢⎣Σ11 . . . Σ1𝑃

∙ . . . . . .
∙ ∙ Σ𝑃 𝑃

⎤⎥⎦
⎞⎟⎠

𝑘(−)

, 𝑃 = |P|. (3.29c)

Note that the order of participants’ ego-beliefs needs to be aligned with the columns of
the measurement sensitivity matrix H for the particular decoupled observation, meaning
that the columns of H𝑘 =

[︁
H𝑘

𝑝 H𝑘
𝑜

]︁
, with H𝑘

𝑜 = 0 needs to be aligned with the x̂𝑝.

H𝑘 =
[︀[︀

H1 . . . H𝑃

]︀
0
]︀𝑘
, 𝑃 = |P|. (3.29d)

Up to the previous step, no approximations were made, and the beliefs are exact. In
the following we describe, why approximations are needed in isolated update steps. As
defined in Equation (3.15e), the partitioned Kalman gain is

K =
[︂
K𝑝

K𝑜

]︂
=
[︃

Σ(−)
𝑝𝑝 HT

𝑝

Σ(−)
𝑝𝑜 HT

𝑝

]︃(︁
S𝑘
)︁−1

, (3.30)

with S𝑘 = H𝑝Σ(−)
𝑝𝑝 HT

𝑝 + R. We are not able to restore the cross-covariance to non-
participants Σ𝑝𝑜 in an isolated update, despite some participants might have factorized
cross-covariances 𝒮𝑝𝑜 ̸= 0, but the corresponding counterpart 𝒮𝑜𝑝 is temporarily unavail-
able. Consequently, the Kalman gain for other K𝑜 cannot be calculated.

Inspired by the suboptimal SKF, the Kalman gain of non-participants is forced to be
zero, resulting in the Schmidt-Kalman gain K̆ according to Equation (2.72d)

K̆ =
[︂
K𝑝

0

]︂
. (3.31)

Consequently, non-participants do not directly benefit from participants’ observations.

Lemma 4 In isolated decoupled observations, correlations can only be obtained among
participant’s belief, despite some participants might be correlated to some non-participants.

Proof: Assuming a correlation between a participant A𝑖 and non-participants is
Σ𝑖𝑜 ̸= 0, but no correlation between the participant A𝑗 and non-participants Σ𝑗𝑜 = 0. In an
isolated joint update between A𝑖 and A𝑗 , the Kalman gain for non-participants is forcibly
set to K𝑝 = 0. Therefore, no state correction will be applied {x̂𝑜,Σ𝑜𝑜}

(+) = {x̂𝑜,Σ𝑜𝑜}
(−)

and no correlation will be obtained Σ(+)
𝑗𝑜 = Σ(−)

𝑗𝑜 = 0.
The approximated partitioned a posteriori covariance Σ̆(+) according to Equation (3.15g)

is consequently

Σ̆(+) =
[︃

(I−K𝑝H𝑝)Σ(−)
𝑝𝑝 −K𝑝 (I−K𝑝H𝑝)Σ(−)

𝑝𝑜

∙ Σ(−)
𝑜𝑜

]︃
. (3.32)

The a posteriori mean ˘̂x(+) is

˘̂x(+) =
[︃

x̂(+)
𝑝

˘̂x(+)
𝑜

]︃
=
[︃

x̂(−)
𝑝 �K𝑝r

x̂(−)
𝑜

]︃
. (3.33)
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Despite the approximations made for non-participants’ beliefs, the cross-covariance of
non-participants can be corrected Σ(+)

𝑝𝑜 = ϒ𝑝Σ(−)
𝑝𝑜 (see Equation (3.32)) using

ϒ𝑝 = (I−K𝑝H𝑝). (3.34)

For private observations (case of a single participant) the participant, e.g., A𝑖, applies
the correction factor ϒ (Equation (3.34)) on the corresponding element of buffer.

ℬ𝑖

(︁
𝑡𝑘
)︁

= ϒ𝑘
𝑖 ℬ𝑖

(︁
𝑡𝑘
)︁
, 𝑖 ∈ P. (3.35)

In DCSE-DACC, this correction factor is directly applied on all factorized cross-covariances
held in 𝒞𝑖, meaning this operation scales linearly with the number of met agents.

For joint observations with multiple participants, |P| > 1 , Luft et al. proposed in [94,
95], that each participant applies a correction in relation to gained information

Λ𝑘
𝑖 = Σ𝑘(+)

𝑖𝑖

(︁
Σ𝑘(−)

𝑖𝑖

)︁−1
, 𝑖 ∈ P (3.36)

on the individual participants cross-covariance factors. In DCSE-DAH these individual
correction terms are applied on the corresponding element of the buffer by

ℬ𝑖

(︁
𝑡𝑘
)︁

= Λ𝑘
𝑖 ℬ𝑖

(︁
𝑡𝑘
)︁
, 𝑖 ∈ P (3.37)

and allows reducing the maintenance effort for cross-covariance factors held in 𝒞.
The correction factor Λ𝑖, is reasonable approximation if participants P are strongly

directly or indirectly correlated with non-participants P̄ before the joint observation.

3.3.4 Buffer maintenance and propagation strategy
In this subsection, we describe how the cross-covariances are propagated and updated,
once needed for joint observations, and how we prevent cross-covariances to fall out of the
past horizon. Figure 3.1 shows how correction factors from different events are used to
propagate a previous cross-covariance forward, which is also described in Algorithm 3.7.

To keep cross-covariances in the buffer’s time horizon, we suggest performing a sanity
check, e.g., at the end of each propagation step. The aim is to find factorized cross-
covariances by their timestamps, that are exactly at the border of the time horizon. In
that case, we perform immediately a forward propagation using the entire history, which
is described in Algorithm 3.3.

Consequently, a smaller buffer increases the chance that a forward propagation is
performed in propagation steps (assuming sporadic joint observations). In the best case,
the buffer size matches the ratio between the rate of the propagation sensor and the rate
of joint observations rendering the approach constant in maintenance complexity. Note
that setting the buffer size of ℬ to 1, DCSE-DAH emulates DCSE-DACC.

3.3.5 Algorithm
In this section, the DCSE-DAH algorithm [76] based on the EKF formulation is described
and should be executed on each agent of a swarm (see Algorithm 3.1), as depict in the
block diagram in Figure 3.2. Each agent’s estimator consist of a unique identifier id𝑝,
the latest belief {x̂𝑘

𝑝 ,Σ
𝑘
𝑝𝑝}, a correction buffer ℬ𝑝, and a dictionary with the factorized

cross-covariance Dict𝑝. The isolated state propagation step is described in Algorithm 3.2
for an agent A𝑝 with a non-linear state transition function 𝜑𝑝(x𝑝,u𝑝). A private isolated
update step based on a non-linear measurement function ℎprivate(x) is described in Algo-
rithm 3.4. A joint isolated update step with two participants, A{𝑖,𝑗}, based on a non-linear
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Figure 3.1: Decomposed cross-covariance forward propagation scheme using elements with
accumulated correction terms from the buffer ℬ𝑖 on A𝑖. At 𝑡(𝑘) = 1, A𝑖 performs a joint
observation with the uncorrelated A𝑗 resulting in a correction Λ1

𝑖𝑗 (event b at 𝑡1) and a
decomposed cross-covariance 𝒮1(+)

𝑖𝑗 . Propagations and private updates result in Φ and ϒ,
respectively. The events are left multiplied in order on the buffer elements. At 𝑡(𝑘) = 6,
the correlated agents perform again a joint observation. Therefore, each agent accumulates
its buffer elements to forward propagate 𝒮1(+)

𝑖𝑗 → 𝒮6(−)
𝑖𝑗 by M6

2 (Equation (3.28) and Al-
gorithm 3.7). After that, a new correction factor Λ6

𝑖𝑗 and cross-covariance factor 𝒮6(+)
𝑖𝑗 is

obtained. Image reused from [76].

measurement function ℎjoint(x𝑖,x𝑗), {𝑖, 𝑗} ∈ P is described in Algorithm 3.8, while this
can be extended to an arbitrary number of participants. Please note, that joint observa-
tions need to identify other agents. Communication between agents is just required during
processing joint observations, while the other filter steps are performed independently. In
order to fully exploit the benefits of the correction buffer ℬ𝑝, factorized cross-covariance
need to be forward propagated with a common accumulated state correction matrix M
(see Equation (3.28)), which is satisfied by the 𝑠𝑒𝑡_𝑓𝑐𝑐() and 𝑔𝑒𝑡_𝑓𝑐𝑐() algorithms de-
scribed in Algorithm 3.6 and Algorithm 3.5, respectively.

Figure 3.2: Shows the block diagram of the DCSE-DAH approach for individual agents.
The sensor suite provides measurements to the estimator. For inter-agent joint observation,
information exchange between estimators is needed. Details are provided in Section 3.3.
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Algorithm 3.1: DCSE-DAH: Measurement handling on A𝑝

Input : id𝑝, x̂
𝑘
𝑝 ,Σ

𝑘
𝑖𝑖,ℬ𝑝,Dict𝑝, z

𝑘,R𝑘, 𝑡𝑘

1 if z𝑘 is a proprioceptive measurement or control input then
2 isolated_propagation(x̂𝑘(−)

𝑝 ,Σ𝑘(−)
𝑝𝑝 ,ℬ𝑝, z

𝑘,R𝑘,Dict𝑝, 𝑡
𝑘) (Alg. 3.2)

3 end
4 if z𝑘 is a private observation on A𝑖 then
5 isolated_private(x̂𝑘

𝑝 ,Σ
𝑘
𝑝𝑝,ℬ𝑝, z

𝑘,R𝑘, 𝑡𝑘) (Alg. 3.4)
6 end
7 if z𝑘 is a joint observation between A𝑖 and A𝑗 then
8 isolated_joint(x̂𝑘(−)

𝑝 ,Σ𝑘(−)
𝑝𝑝 z𝑘,R𝑘, id{𝑖,𝑗},Dict𝑝,ℬ𝑝, 𝑡

𝑘) (Alg. 3.8)
9 end

Algorithm 3.2: DCSE-DAH: Isolated Propagation on A𝑝

Input : x̂𝑘(−)
𝑝 ,Σ𝑘(−)

𝑝𝑝 ,ℬ𝑝,u
𝑘,N𝑘,Dict𝑝, 𝑡

𝑘

1 Φ𝑘
𝑝 =

[︁
𝜕𝜑𝑝(x𝑝,u𝑝)

𝜕x𝑝
(x̂𝑝,u𝑝)

]︁𝑘−1

2 G𝑘
𝑝 =

[︁
𝜕𝜑𝑝(x𝑝,u𝑝)

𝜕u (x̂𝑝,u𝑝)
]︁𝑘−1

3 Q𝑘 = G𝑘
𝑝N𝑘(G𝑘

𝑝)T

4 x̂𝑘
𝑝 = 𝜑𝑝(x̂𝑘

𝑝 ,u
𝑘)

5 Σ𝑘
𝑝𝑝 = Φ𝑘|𝑘−1

𝑝 Σ𝑘−1
𝑝𝑝 (Φ𝑘|𝑘−1

𝑝 )T + Q𝑘−1

6 ℬ𝑝

(︁
𝑡𝑘
)︁

= Φ𝑘|𝑘−1 (push back)
7 check_horizon(ℬ𝑝,Dict𝑝, 𝑡

𝑘) (Alg. 3.3)

Algorithm 3.3: DCSE-DAH: check_horizon on A𝑝

Input : ℬ𝑝,Dict, 𝑡𝑘

1 𝑡oldest = 𝑚𝑖𝑛(ℬ𝑝)
2 for {𝑡𝑚,𝒮𝑚(−), id} in Dict do
3 M𝑘

𝑚 = compute_corr(ℬ𝑝, 𝑡
𝑚, 𝑡𝑘) (Alg. 3.7)

4 if 𝑡𝑚 ≡ 𝑡oldest then
5 Dict(id) = {M𝑘

𝑚𝒮
𝑚(−), 𝑡𝑘} (forward prop.)

6 end
7 end

Algorithm 3.4: DCSE-DAH: Isolated Private Observation on A𝑝

Input : x̂𝑘(−)
𝑝 ,Σ𝑘(−)

𝑝𝑝 ,ℬ𝑝, z
𝑘,R𝑘, 𝑡𝑘

1 H𝑝 =
[︁

𝜕ℎprivate(x𝑝)
𝜕x𝑝

(x̂𝑝)
]︁𝑘(−)

2 K𝑝 = Σ𝑘(−)
𝑝𝑝 HT

𝑝 (H𝑝Σ𝑘(−)
𝑝𝑝 HT

𝑝 + R𝑘)−1

3 x̂𝑘(+)
𝑝 = x̂𝑘(−)

𝑝 �K𝑝

(︁
z𝑘 � ℎ(x̂𝑝)

)︁
4 Σ𝑘(+)

𝑝𝑝 = (I−K𝑝H𝑝)Σ𝑘(−)
𝑝𝑝

5 ϒ𝑘
𝑝 = (I−K𝑝H𝑝)

6 ℬ𝑝

(︁
𝑡𝑘
)︁

= ϒ𝑘
𝑝ℬ𝑝

(︁
𝑡𝑘
)︁
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Algorithm 3.5: DCSE-DAH: get_fcc on A𝑖

Input : ℬ𝑖, id𝑗 ,Dict𝑖, 𝑡
𝑚

1 {𝒮𝑘
𝑖𝑗 , 𝑡

𝑘} = Dict𝑖(id𝑗)
2 if 𝑡𝑘 ̸= 𝑡𝑚 then
3 /* Note: make sure that all 𝒮 are forward propagated */
4 M𝑘|𝑚 = compute_correction(ℬ𝑖, 𝑡

𝑚, 𝑡𝑘) (Alg. 3.7)
5 for {𝑡𝑛,𝒮𝑛(−), id} in Dict𝑖 do
6 if 𝑡𝑛 ≡ 𝑡𝑚 then
7 Dict𝑖(id) = {M𝑘|𝑚𝒮𝑛(−), 𝑡𝑘} (forward prop.)
8 end
9 end

10 end
11 {𝒮𝑘

𝑖𝑗 , 𝑡
𝑘} = Dict𝑖(id𝑗)

Output: 𝒮𝑘
𝑖𝑗

Algorithm 3.6: DCSE-DAH: set_fcc on A𝑖

Input : ℬ𝑖, id𝑗 ,Dict𝑖, 𝑡
𝑚,𝒮𝑚

𝑖𝑗

1 Dict𝑖(id𝑗) = {𝒮𝑚(+)
𝑖𝑗 , 𝑡𝑚}

2 /* Note: make sure that all 𝒮 are forward propagated to the latest one */
3 𝑡k = 𝑚𝑖𝑛(ℬ𝑖)
4 /* Note: this branch will only be issued, if a new agent was met */
5 if 𝑡𝑚 ̸= 𝑡k then
6 M𝑚|𝑘 = compute_corr(ℬ𝑖, 𝑡

𝑘, 𝑡𝑚) (Alg. 3.7)
7 for {𝑡𝑛,𝒮𝑛, id} in Dict do
8 if 𝑡𝑛 ≡ 𝑡k then
9 Dict(id) = {M𝑚|𝑘𝒮𝑛, 𝑡𝑚} (forward prop.)

10 end
11 end
12 end

Algorithm 3.7: DCSE-DAH: compute_correction on A𝑝

Input : ℬ𝑝, 𝑡
𝑚−1, 𝑡𝑚,Δ𝑡

1 M𝑚
𝑚−1 = I

2 for 𝑖← 𝑡𝑚−1 + Δ𝑡 to 𝑡𝑚 by Δ𝑡 do
3 M𝑚

𝑚−1 = ℬ𝑝(𝑖)M𝑚
𝑚−1

4 end
Output: M𝑚

𝑚−1
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Algorithm 3.8: DCSE-DAH: Isolated Joint Observation on A{𝑖,𝑗}

Input : x̂𝑘(−)
{𝑖,𝑗},Σ

𝑘(−)
{𝑖𝑖,𝑗𝑗}

𝑖z𝑗

𝑘
,R𝑘, id{𝑖,𝑗},Dict{𝑖,𝑗},ℬ{𝑖,𝑗}

1 if id𝑖 < id𝑗 /* one possibility */ then
2 /* Interim Master */ A𝑖 receives {x̂𝑘(−)

𝑗 ,Σ𝑘(−)
𝑗𝑗 , id𝑗 ,𝒮

𝑘(−)
𝑗𝑖 } from A𝑗

3 𝒮𝑘(−)
𝑖𝑗 = get_fcc(ℬ𝑖, id𝑗 ,Dict𝑖, 𝑡

𝑘) (Alg. 3.5)
4 Σ𝑘(−)

𝑖𝑗 = 𝒮𝑘(−)
𝑖𝑗 (𝒮𝑘(−)

𝑗𝑖 )T

5 Σ𝑘(−)
𝑝𝑝 =

[︂
Σ𝑖𝑖 Σ𝑖𝑗

ΣT
𝑖𝑗 Σ𝑗𝑗

]︂𝑘(−)

6 H𝑝 =
[︁

𝜕ℎjoint(x𝑖,x𝑗)
𝜕x𝑖

(x̂𝑖, x̂𝑗) 𝜕ℎjoint(x𝑖,x𝑗)
𝜕x𝑗

(x̂𝑖, x̂𝑗)
]︁𝑘(−)

7 K𝑝 = Σ𝑘(−)
𝑝𝑝 HT

𝑝 (H𝑝Σ𝑘(−)
𝑝𝑝 HT

𝑝 + R𝑘)−1

8 x̂𝑘(−)
𝑝 =

[︁
(x̂𝑘(−)

𝑖 )T (x̂𝑘(−)
𝑗 )T

]︁T

9 x̂𝑘(+)
𝑝 = x̂𝑘(−)

𝑝 �K𝑝

(︁
𝑖z𝑗

𝑘
� ℎ(x̂𝑖, x̂𝑗)

)︁
10 Σ𝑘(+)

𝑝𝑝 = (I−K𝑝H𝑝)Σ𝑘(−)
𝑝𝑝

11 /* Note: split Σ𝑘(+)
𝑝𝑝 and x̂𝑘(+)

𝑝 again */
12 𝒮𝑘(+)

𝑖𝑗 = Σ𝑘(+)
𝑖𝑗

13 set_fcc(ℬ𝑖, id𝑗 ,Dict𝑖, 𝑡
𝑘,𝒮𝑘(−)

𝑖𝑗 ) (Alg. 3.6)
14 𝒮𝑘(+)

𝑗𝑖 = I
15 A𝑖 sends {x̂𝑘(+)

𝑗 ,Σ𝑘(+)
𝑗𝑗 , id𝑖,𝒮

𝑘(+)
𝑗𝑖 } to A𝑗

16 Λ𝑘
𝑖 = Σ𝑘(+)

𝑖𝑖 (Σ𝑘(−)
𝑖𝑖 )−1

17 ℬ𝑖

(︁
𝑡𝑘
)︁

= Λ𝑘
𝑖 ℬ𝑖

(︁
𝑡𝑘
)︁

18 Dict𝑖(id𝑗) = {𝒮𝑘(+)
𝑖𝑗 , 𝑡𝑘}

19 else
20 𝒮𝑘(−)

𝑗𝑖 = get_fcc(ℬ𝑗 , id𝑖,Dict𝑗 , 𝑡
𝑘) (Alg. 3.5)

21 A𝑗 sends {x̂𝑘(−)
𝑗 ,Σ𝑘(−)

𝑗𝑗 , id𝑗 ,𝒮
𝑘(−)
𝑗𝑖 } to A𝑖

22 A𝑗 receives {x̂𝑘(+)
𝑗 ,Σ𝑘(+)

𝑗𝑗 , id𝑖,𝒮
𝑘(+)
𝑗𝑖 } from A𝑖

23 Λ𝑘
𝑗 = Σ𝑘(+)

𝑗𝑗 (Σ𝑘(−)
𝑗𝑗 )−1

24 ℬ𝑗

(︁
𝑡𝑘
)︁

= Λ𝑘
𝑗 ℬ𝑗

(︁
𝑡𝑘
)︁

25 set_fcc(ℬ𝑗 , id𝑖,Dict𝑗 , 𝑡
𝑘,𝒮𝑘(+)

𝑗𝑖 ) (Alg. 3.6)
26 end



3. Filter-based Distributed Collaborative State Estimation 81

3.4 Architecture Overview
In this section, we present diagrammatically some system architectures for filter-based CSE
on a group of three heterogeneous agents (with different sensor modalities S1, . . . ,S3) to
emphasize the difference between our proposed DCSE-DAH approach and closely related
approaches. These diagrams should give an answer to the questions: “Where is the data
processed?” and “What data is maintained?”.

All obtain proprioceptive measurements (orange arrow), agent A𝑖 and A𝑗 private ones
(red arrow), and a relative joint observation is obtained between agent A𝑘 and A𝑖 (blue
arrow). A𝑖 and A𝑗 are jointly observing a commonly known object of interest (held in blue),
e.g., the synchronous relative bearing angles to a moving object in order to triangulate
its position. In this context, an object of interest might be a remarkable landmark or
observed/tracked target. Its state is part of the estimation problem/global full state. These
arrows indicate, what sensor measurements are obtained and shows in which filter they
are processed, while thickness of these arrows should indicate the amount/frequency.

Each agent is associated with a unique identifier and has a globally synchronized
reference time (held in purple). The time synchronization needs to be at least twice as
accurate as the measurement update rate of the fastest sensor in the swarm, allowing
accurately associating estimated states with obtained measurements 6.

The measurements are assumed to be processed in the order they are obtained (no
out-of-sequence updates).

The communication link is assumed to be perfect, meaning a full and permanent con-
nectivity, insignificant latency, sufficient bandwidth, and no packet are drops.

For our analysis of different filter strategies, we assume a group of 𝑁 homogeneous
agents with a global full state of 𝑀 elements7, and 𝑚 = 𝑀

𝑁 being the state vector length
of the individual agent’s state. We assume that all agents provide synchronously and
alternating proprioceptive and exteroceptive sensor readings. We assume homogeneous
senors with a single sensor measurement containing 𝑟 elements and in total 𝑅 = 𝑁𝑟
elements per filter step.

3.4.1 Centralized CSE (CCSE)
In a centralized architecture, as shown in Figure 3.3, available information is processed
in a central entity, denoted as Fusion Center (FC), with a global full state estimator
as described in Section 3.2. Agents require a persistent communication with the FC, to
receive the latest beliefs and to provide extero- and proprioceptive sensor data to the
FC. Given known models and noise characteristics of the individual agent’s systems (in a
heterogeneous swarm, each node might be modeled individually), the FC provides exact
estimates (see Definition 4).

A disadvantage of a naive implementation is that, individual agents’ proprioceptive
sensor readings need to be processed synchronously to perform a simultaneous state pre-
diction step on the global full state. Additionally, we assume that all exteroceptive sensor
readings are processed synchronously as well.

Properties

Regarding memory consumption, the global full belief (mean and covariance) needs to be
stored. Assuming global full state with 𝑀 elements, in total 𝑀(𝑀 + 1) elements for the

6In real applications, this constraint is satisfied easily as local clock sources are typically drifting slowly
and existing network synchronization protocols, such as Network Time Protocol (NTP) [100], can be used.

7An element is equal to a scalar value which can be discretized/represented in various ways, depending
on the use-case, e.g., as a floating point values at double precision according to the IEEE 754 standard.
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global belief (mean and covariance) need to be stored in the FC.
Assuming a synchronous information exchange, each synchronous filter step requires

2𝑁 communication links: 𝑁 for transmitting the measurement from the agents to the
FC and 𝑁 messages to reset/correct the beliefs of 𝑁 agents by the FC. Depending on the
problem at hand, it might not be required to immediately update all agents with the latest
beliefs. But when it comes to fast motions and aggressive maneuvers in closed-loop control,
immediate estimates with low latency are needed to satisfy a set trajectory. Meaning that
the round-trip time between a measurement is received, it was processed on the FC, and
the corrected belief is received again at the agent might be a limitation for real-world
applications. Please note that, once agents are correlated, any measurement among them
will result in updated beliefs (see Lemma 1).

Regarding message size and latency, two naive possibilities to transmit the corrected
belief exist. Either a global full-state is broadcasted by the fusion center, which can, based
on the network type and topology, minimize the latency, or individual direct messages
are sent sequentially to the individual agents, requiring a routing protocol. Assuming a
homogeneous swarm with a global full state of 𝑀 elements and 𝑁 agents, either 𝑀+𝑁𝑚2

elements in case of belief broadcasting, or 𝑁 times (𝑚+ 1)𝑚 elements in case of sequential
messages have to be transmitted. Before the corrected belief can be processed, the agents
need to transmit their latest sensor reading with 𝑅 elements to the FC, leading to a total
message size per filter step of 𝑅+𝑁 (𝑚+ 1)𝑚 elements.

Regarding connectivity, messages sent by the FC must be received by the agents, if no
direct link can be established, the existence of a spanning tree rooted at the FC, a routing
protocol/scheme, and a persistent star-graph-based communication is required.

Despite communication constraints, offloading the computation effort from a mobile
and computationally constrained agent to a centralized fusion center, might pave the way
for new possibilities/applications. It might allow reducing the energy consumption on the
agents and, thus, to extend the mission time. It might allow processing resource intensive
algorithms, which might be well-scaling on the platform the FC is executed by exploiting
different hardware accelerators (multiple CPU cores or GPUs acceleration, etc..). In [59],
we investigated on offloading a computation intense VIO algorithm at different resolution,
from small MAVs partially or fully on a cloud or edge facility, assuming a high bandwidth
and low latency of a 5G mobile network in order to improve the localization accuracy.

3.4.2 CCSE with Distributed Propagation (CCSE-DP)
One of the most trivial solutions to avoid communication between agents while they per-
form their state propagation steps, e.g., based on a control input or proprioceptive sensor
readings, can be obtained by a delayed cross-covariance prediction.

This approach assumes that the beliefs/states of the individual nodes can be predicted
independently, meaning that the prediction model (e.g., a motion model) allows an inde-
pendent state transition, and that the distributed agents do not require information about
the latest cross-covariance of the swarms nor the current global full-state, while they are
predicting.

In Equation (3.6b), the cross-covariance between agent A1 and A2 is propagated by
their state transition matrices Φ𝑘|𝑘−1

11 and Φ𝑘|𝑘−1
22 , by Σ𝑘

12 = Φ𝑘|𝑘−1
11 Σ𝑘−1

12 Φ𝑘|𝑘−1
22

T
.

As shown in Figure 3.4, proprioceptive sensor readings are processed locally on each
agent to evolve an agent’s local belief. In order to propagate the cross-covariance relating
to other agents, a history/sequence of the state transition matrix Φ is maintained (cross-
covariances are only required in the update step and can be recovered at any update
incidence), a so-called state transition history ℱ = Hist{Φ} or an accumulated state
transition matrix Φ̄𝑘|𝑚

𝑖𝑖 =
∏︀𝑘

𝑙=𝑚 Φ𝑘|𝑙
𝑖𝑖 , which gets reset after the latest update step on
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Fusion Center

 full state EKF

Figure 3.3: CCSE: Time-synchronized agents transmit all locally obtained sensor mea-
surements to a central sensor fusion entity, the Fusion Center (FC). The FC maintains
a filter that estimates the entire swarms’ full state and sends the corrected states to the
corresponding agents after each filter step.

the FC by Φ̄𝑘|𝑚
𝑖𝑖 = I. Once any of them obtains a private or joint observation at 𝑡𝑘, all

agents need to send their current beliefs {x̂𝑘
𝑖 ,Σ

𝑘
𝑖𝑖} and an accumulated history of the state

transition matrices Φ̄𝑘|𝑚
𝑖𝑖 to the FC. This allows to restore the cross-covariance between

agents stemming from the previous update at 𝑡𝑚 exactly in the FC by

Σ𝑘
𝑖𝑗 = Φ̄𝑘|𝑚

𝑖𝑖 Σ𝑚
𝑖𝑗

(︁
Φ̄𝑘|𝑚

𝑗𝑗

)︁T
, {𝑖, 𝑗} = 1, . . . , 𝑁, 𝑖 ̸= 𝑗. (3.38)

Then, the FC is able to process the observation given the global full state according
to Equation (2.65), sends the corrected/updated beliefs back to all agents, and if agents
are using a state transition matrix series, they need to reset it by Φ̄𝑘|𝑚

𝑖𝑖 = I or in case of
the history buffer, they can clear it.

Properties

Regarding memory consumption, each agent maintains its local belief and additionally
needs to store the accumulate state transition matrix. Assuming a homogeneous swarm
with 𝑁 agents and global full state with 𝑀 elements, in total 𝑀

𝑁 (1 + 𝑀
𝑁 + 𝑀

𝑁 ) (mean,
covariance, and accumulated state transition matrix) elements need to be stored per agent.
Additionally, the FC needs to store the global full belief with 𝑀(𝑀+1) elements. In total,
𝑀(𝑀 + 1) +𝑁𝑚(1 + 2𝑚) elements.

Assuming a synchronous information exchange, each synchronous filter update step
requires 2𝑁 communication links: 𝑁 for transmitting the measurement, the latest beliefs,
and accumulated transition matrices from the agents to the FC and 𝑁 links from the FC
to send the corrected beliefs back to all agents8.

8For simplicity, we assume that all nodes can be reached directly from the FC, otherwise a routing
mechanism is needed, which inherently increases the number of links per message. Further, we assume that
the transmitted data fits in a single message.
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Fusion Center

 full state EKF

EKF

EKF

EKF

Figure 3.4: CCSE-DP: Each time-synchronized agent maintains a filter locally, that allows
processing prediction steps (evolving the estimate in time) based on obtained proprioceptive
sensor measurements locally. Each agent maintains a history of state transition matrices Φ,
which are accumulated and sent with the most recent beliefs to a FC once any agent obtains
a exteroceptive measurement to forward propagate the dated cross-covariances of the full
state. After the update was processed on the full state, the FC sends the corrected beliefs
back to the agents.

Regarding message size, each agent has to transmit and receive the local belief (mean
and covariance), an accumulated transition matrix with equal size as its covariance and the
measurement. Assuming a homogeneous swarm with 𝑁 agents, each agent needs to send
𝑟 + 𝑚(1 + 2𝑚) elements and receive 𝑚(1 + 𝑚) elements per exteroceptive measurement.
Thus, in total 𝑅+𝑁𝑚(2 + 3𝑚) elements need to be communicated per update step.

Regarding connectivity, the same constraints as in Section 3.4.1 apply.

3.4.3 DCSE with Distributed Propagation (DCSE-DP)
Like CCSE-DP, this approach assumes that the beliefs/states of the individual nodes can
be predicted independently. Meaning that the prediction model (e.g., a motion model)
allows an independent state transition. In [121, 123], Roumeliotis and Bekey proposed
to factorize cross-covariances between agents to exploit the symmetry of the covariance
matrix, in order to perform the state propagation step fully distributed. At the same time,
it is possible to restore cross-covariances between agents exactly, and thus, the estimation
results are centralized-equivalent.

Figure 3.5 shows the fully distributed approach by Roumeliotis and Bekey, which
distributes the update step across the agents, meaning that no FC is needed, but it requires
a persistent all-to-all communication at the moment of a private or joint update. Each
agent maintains factorized off-diagonal block-elements of their corresponding row of the
global full state in, e.g., a dictionary container (see Section 2.2).

Proprioceptive sensor readings are processed locally on each agent to evolve the agent’s
local belief and factorized cross-covariance relating to other agents in time. For instance,
if agents are using a high-rate IMU as state propagation sensor, these measurements
can be processed independently, asynchronously, and locally on each agent, requiring no
communication. Therefore, many other approaches directly build upon this concept, e.g.,
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[80][79][94][95][73][76].
Once any of them obtains a private or joint observation, agents need to exchange

factorized cross-covariances and their beliefs to correlated ones. Then 𝑁(𝑁−1)
2 measurement

innovations and updated cross-covariances need to be processed and exchanged. After
that, individual agents can compute their Kalman gain, update their beliefs, and need to
factorize their cross-covariances again (locally). This allows to restore the cross-covariance
between agents exactly and the calculations in update steps are distributed among all
agents. A downside is that many communication links are required to obtain the needed
information on each agent and that a generalization for joint updates relating to any
number of agents is rather complex.

Properties

Regarding memory consumption, each agent maintains its local belief and additionally
needs to keep track of the factorized cross-covariances referring to other agents, e.g., in a
dictionary that is access via the other agent’s ID. Assuming a homogeneous swarm with
𝑁 agents and global full state with 𝑀 elements, in total 𝑚+𝑁𝑚 (mean, covariance, and
factorized cross-covariances) elements need to be stored per agent. In total, 𝑀(𝑀 + 1)
elements.

Regarding communication, 𝑁+2𝑁(𝑁−1)
2 links are required once an exteroceptive mea-

surement is obtained: 𝑁 links to request an information exchange, 𝑁(𝑁−1)
2 links to ex-

change the latest beliefs and 𝑁 − 1 cross-covariance factors across the agents (in the
limit), and 𝑁(𝑁−1)

2 messages to exchange updated cross-covariance factors and measure-
ment innovations again.

Assuming a homogeneous swarm with the global full state of 𝑀 elements and 𝑚 = 𝑀
𝑁

individual states, 𝑁(𝑁−1)
2 (𝑚 + 𝑚2 + (𝑁 − 1)𝑚2 + 𝑚2 + 𝑟2) elements need to be sent per

update, with 𝑟 being the dimension of the measurement/observation.
As a consequence, a persistent all-to-all communication required, while processing ex-

teroceptive measurements and the amount of exteroceptive ones increases typically with
the group size.

3.4.4 Decentralized CSE with Distributed Propagation (DCSE-DP*)
DCSE-DP* is a decentralized flavor of DCSE-DP, as described in Section 3.4.3, where
an agent acts as interim master at the moment it receives a private or joint measure-
ment. This agent requests all other agents’ beliefs and cross-covariance factors. It behaves
equal to the FC in CCSE-DP, as described in Section 3.4.2, and performs the update
exactly. After the update step was computed, it sends the corrected beliefs and factorized
cross-covariance back to the other agents. Compared to DCSE-DP, this results in less
communication links and less data to exchange, but increases the computational complex-
ity. Please note, that measurements are processed sequentially, not parallel, meaning that
other agents’ processes are idle, while one acts as interim master, meaning that a task par-
allelization on measurement level can only be achieved for proprioceptive measurements.
Consequently, processing a private or joint updates on an individual agent remains the
critical path/bottleneck.

Properties

Regarding memory consumption, each agent maintains its local belief and factorized cross-
covariances referring to other agents, e.g., in a dictionary that is access via the other agents
identifiers. Assuming a homogeneous swarm with 𝑁 agents, in total 𝑚 + 𝑁𝑚 (mean,
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EKF

EKF

 EKF

Figure 3.5: DCSE-DP: Each time-synchronized agent maintains a filter locally, that allows
processing prediction steps (evolving the estimate in time) based on obtained proprioceptive
sensor measurements locally. Each agent maintains a set of factorized cross-covariances 𝒮,
which are exchanged with each other, once any agent obtains an exteroceptive measurement,
as the update steps are processed distributed.

covariance, and factorized cross-covariances) elements need to be stored per agent. In
total, 𝑀(𝑀 + 1) elements.

Communication is just required to process update steps. Assuming synchronous exte-
roceptive measurements and a known interim master, 𝑁 − 1 links to provide the measure-
ment, the local belief, and cross-covariance terms to the interim master, which responds
with the corrected beliefs and factorized cross-covariances. Thus, in total 2(𝑁 − 1) links
are required.

Regarding message size, each agent has to transmit and receive the local belief (mean
and covariance), the elements in the dictionary, and the measurement. Assuming a ho-
mogeneous swarm with 𝑁 agents, 𝑁 − 1 agent needs to send 𝑟 + 𝑚 + 𝑁𝑚 elements to
the interim master agent and receives 𝑚+𝑁𝑚 corrected elements per exteroceptive mea-
surement. Thus, in total 𝑅 + 𝑀 + 𝑀2 elements need to be communicated per update
step.

Regarding connectivity, any agents can act as interim master. During processing update
steps, a star-graph based and persistent communication with the root at the interim master
is needed.

3.4.5 DCSE based on Distributed Approximated Cross-Covariances (DCSE-DACC)
In Figure 3.7, an architecture derived from Section 3.4.3 supporting distributed propa-
gation and distributed private exteroceptive sensor updates is shown. In addition to the
assumption of decoupled input dynamics of systems, as in the SKF (see Section 2.8.3),
similar assumption regarding decoupled output dynamics are made. This means that non-
participating agents are assumed to be nuisance variables with respect to the participant’s
belief – which is considered as essential variables – and the full state is partitioned, as in
the SKF, during the Kalman filter update step. The state prediction is equal to DCSE-
DP. Note, that the proposed update step is not equal to the SKF update step (see Equa-
tion (2.72)), as the uncertainty of the nuisance parameters is not or just partially available.
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EKF

EKF

 EKF

Interim Master

 full state EKF

Figure 3.6: DCSE-DP*: Each time-synchronized agent maintains a filter locally, that allows
processing prediction steps (evolving the estimate in time) based on obtained proprioceptive
sensor measurements locally. Each agent maintains a set of factorized cross-covariances 𝒮.
Once a filter update steps needs to be performed, one agent acts as interim master. The
other agents send their most recent beliefs and factorized cross-covariances to the interim
master. After the update was processed on the full state, the interim master agent sends the
corrected beliefs and factorized cross-covariances back to the other agents.

Therefore, the nuisance parameters’ uncertainty and the interdependencies to the essen-
tial variables cannot be considered and corrected exactly, and approximations need to be
applied. Due to approximations made regarding non-participating agents’ cross-covariance
factors, joint updates requires communication only among participating agents.

This approach was proposed by Luft et al. in [94, 95] and allows processing propagation
and private update steps independently, while joint update steps require just participating
agent. Participating agents are defined as those, who’s beliefs are directly coupled to the
systems’ dynamics in the update step9. In private updates, only the ego-belief (or parts
if it) are directly coupled with the ego-system’s output. In contrast to fully distributed
DCSE-DP approach, one agent of 𝑃 participants acts in DCSE-DACC as interim master
to process the joint update step and sends the corrections back to the other participants.
This means that the approach has among participant a temporary centralized processing
topology.

Properties

The memory consumption is equal to DCSE-DP as described in Section 3.4.3 and in
total/globally seen 𝑀(𝑀 + 1) elements, which are distributed among agents.

Regarding communication, 3(𝑃 −1) links are required for each joint observation: 𝑃 −1
links to request the data by the interim master from other participants, 𝑃 − 1 links to
obtain the information, and 𝑃 − 1 links to send the corrected information back.

Assuming a homogeneous swarm with a global full state of 𝑀 elements, 𝑚 = 𝑀
𝑁

9More precisely, whose belief is needed in the linearization of the measurement Jacobian, meaning that
the sparsity of the measurement Jacobian is exploited and assumes in the manner of the SKF [129], that
non-participants are nuisance parameters that obtain no correction.



3. Filter-based Distributed Collaborative State Estimation 88

time sync

EKF

 EKF

EKF

Figure 3.7: DCSE-DACC: Each time-synchronized agent maintains a filter locally that
holds approximated factorized cross-covariance 𝒮 between agents beliefs. This allows agents
to process propagation and private filter steps isolated as the cross-covariance factors obtain
correction in each filter step. Once agents perform joint observations, one agent acts as in-
terim master. It obtains the other agents’ beliefs and cross-covariance factors, processes the
joint update step locally, and sends corrected states back to the participating agents. Cor-
related but non-participating agents’ cross-covariances obtain an approximated correction,
thus this approach is not exact.

individual state elements, and 𝑃 participants. In total (𝑃−1)+2(𝑃−1)(𝑚+𝑚2+(𝑃−1)𝑚2)
elements need to be sent per joint update step. Per participant an element for the request,
the a-priori belief and cross-covariance factors relating to the other participants, and
the a-posteriori belief and factors. Please note, that no measurement data need to be
exchanged as the measurement data is received and processed by the interim master.
Private observations are processed locally and independently.

Consequently, communication is required among participants, while processing joint
measurements.

3.4.6 DCSE based on a Distributed Approximated History (DCSE-DAH)
In Figure 3.8, an architecture of the DCSE-DAH approach is shown and was covered
in Section 3.3.5. Jung and Weiss identified in [76], high propagation sensor update rates
a limitation of DCSE-DACC (see Section 3.4.5) regarding scalability with respect to the
number of known/met agents.

That effect was mitigated by introducing a buffering scheme for correction terms (Φ,
ϒ, Λ) of different filter steps (propagation, private, and joint filter steps). Consequently,
the maintenance effort for factorized cross-covariances can be shifted to the moment they
are actually needed – at the moment of joint observation.

In DCSE-DACC, the factorized cross-covariances obtain corrections in each filter step.
The number of factorized cross-covariances relates to the (directly) correlated/known
agents10. In DCSE-DAH, the factorized cross-covariances obtain corrections, once they

10In contrast to exact filter formulations, correlations between agents can only be obtained via joint
observations, while in exact formulations, correlations can be established indirectly via other agents cor-
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time sync

EKF

 EKF

 EKF

Figure 3.8: DCSE-DAH: Each time-synchronized agent maintains a filter locally that holds
approximated factorized cross-covariance 𝒮 between agents beliefs and a history of recent
correction terms obtained in the different filter steps. This allows agents to process propa-
gation and private filter steps isolated. In contrast to Figure 3.7, the cross-covariance fac-
tors are, in the best case, corrected only at the moment of joint observation – when they
are needed again – and reduces the maintenance effort. Once agents perform joint obser-
vations, one agent acts as interim master, obtains the other agents’ beliefs and corrected
cross-covariance factors, processes the joint update step locally, and sends corrected states
back to the participating agents. Correlated but non-participating agents’ cross-covariances
obtain an approximated correction, thus it is not exact.

are needed again, by applying an accumulated history of correction terms onto dated fac-
tors, which forward-propagates and corrects them. Assuming 𝐶 correlated agents and a
history of 𝐿 elements, in the best case, 𝐿 − 1 + 𝐶 matrix multiplications are needed to
forward propagate all factors, while in DCSE-DACC, 𝐿 × 𝐶 matrix multiplications are
needed. In case of fast propagation sensors with 𝐿 >> 𝐶, a common correction buffer and
applying an accumulated correction term on all factorized cross-covariances is beneficial.

Properties

The memory consumption differs slightly from DCSE-DP and DCSE-DACC by requiring
a buffer to keep track of recent correction terms, e.g., a fixed size sliding window buffer.
The length 𝐿 of this buffer has implications on when and where the correction is applied
and is further discussed in Section 3.3.5. Consequently, each agent maintains a buffer with
𝐿𝑚2 elements, meaning that 𝑚(1+𝑁𝑚+𝐿𝑚) elements are maintained per agent. In total
𝑁𝑚(1 +𝑁𝑚+ 𝐿𝑚) elements.

Regarding connectivity, message size, and communication links, the same constraints
as in Section 3.4.5 apply.

relations, e.g., if agent A1 and A2 are correlated, a joint update between A1 and A3 would introduce
correlations between A3 and A2.
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3.4.7 Summary
In Table 3.1, we summarized the memory consumption, the communication, and the com-
putational complexity for five fusion strategies, CCSE, CCSE-DP, DCSE-DP*, DCSE-
DACC, and DCSE-DAH. Generally, the listing of architectures in this section is by far
not complete, e.g., the interim master decentralized cooperative localization (IMDCL)
algorithm proposed by Kia et al. in [79, 80], a flavor of DCSE-DP, is missing11.

Table 3.1 does not unveil the advantage of DCSE-DAH over DCSE-DACC with respect
to the maintenance effort as our scalability evaluation in manifest Section 3.5.2.

11This approach does not support private updates as it assumes cross-covariances are only changing at
the event of joint updates.
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Figure 3.9: Shows the block diagram of our custom MATLAB simulation framework used
to evaluate different DCSE algorithms.

3.5 Evaluation
A series of experiments in simulation were conducted, in order to validate the applicability
of CSE using an ESEKF formulation that is based on an IMU as state propagation sensor.
At this point, it is worth emphasizing that most evaluation are conducted using rather
trivial dynamic systems – most commonly wheeled robots, e.g., in [79, 89, 95, 121]. In [95],
Luft et al. compared and validated different approaches on the UTIAS dataset [90] for
wheeled robots by Leung et al. .

The aim of this thesis is to go one step further and to apply and compare collaborative
fusion strategies on a more advanced and versatile filter formulation based on an indirect
EKF or ESEKF (see Section 2.8.6) using a strapped-down IMU as state propagation
sensor, which became in recent years a standard approach to address various localization
problems in robotics.

In the first experiment, we want to evaluate if the global information can be propa-
gated through relative position measurements using different DCSE fusion strategies. In
a scenario with two agents, only one is obtaining absolute position information, while the
other agent is just participating in relative position measurements.

In the second experiment, we investigate on the scalability of the proposed DCSE-DAH
approach on larger swarms of agents and compared it against other fusion strategies.

The experiments were conducted in a custom MATLAB simulation framework, that
allows to load existing datasets or to generate trajectories, as shown in Figure 3.9. The exte-
roceptive measurements (private or joint observations) are generated based on the ground
truth trajectory, the sensor calibration states, and noise parameters. The real-world IMU
samples provided by the datasets are used directly (without modification) as measure-
ment. Finally, all measurements are sorted chronologically and are locally processed in a
multi-instance manager. It is maintaining multiple filter instances, while communication
between filter instances is handled locally.

In the evaluation, we used DCSE-DP* instead of DCSE-DP, as this algorithm is easier
to implement and easier to generalize for an arbitrary number of participants in joint
observations. In our simulation framework, each agent has the same processing capabilities
as a FC, as the evaluation is per design processed within one common process. Meaning
that the measurement of the execution time of a fully distributed approach (without
interim master) is per design in our simulation framework not possible12.

12By the time of writing, launching of multiple threads in one process was not supported natively in
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3.5.1 DCSE applied on Aided Inertial Navigation using relative position measurements
In this section, we investigate on a fundamental lemma of Mourikis and Roumeliotis [109],
to show that only a single agent needs absolute information such that others are also
navigating absolutely by receiving relative position measurements, which constitutes a
form of sensor sharing or sensor relaying.

In CL with agents using an INS and joint relative observations among themselves,
neither the absolute position nor the orientation about the gravity vector is observable. If
a single agent has access to global position information, e.g., provided by a GNSS receiver,
and by observing sufficient linear acceleration in two axes, all 6-DoF can be recovered [149].
Furthermore, if one recovers its absolute pose, relative position measurements and linear
acceleration in two axes are sufficient for other robots to observe their absolute pose as
well [121].

We evaluate the estimation performance using the Machine Hall (MH) sequences
(MH_04 for A1 and MH_05 for A2) from the EuRoC dataset [20].

This evaluation was adapted from [76], and details on the filter formulation can be
found in Section 2.9.

Problem Formulation

A team of 𝑁 distributed and communicating agents are equipped with an IMU and run-
ning an ESEKF (see Section 2.8.6). It provides them with drifting pose estimates, while
exteroceptive observations are fused to correct them. Joint observations between agents
are provided by a black box. For instance, the relative pose between agents can be obtained
by recognizing a known visual tag on another agents.

In order to fuse joint observations in a distributed filter formulation, different DCSE
algorithms are evaluated: DCSE-DP (see Section 3.4.2), DCSE-DACC (see Section 3.4.5),
DCSE-DAH (see Section 3.4.6), and Distributed Discorrelated Minimum Variance (DDMV)
proposed by Zhu and Kia in [161, 162].

The following simplifications are made:
• synchronized system clocks, e.g., by network based synchronization protocols,
• each agent has a unique identifier,
• the period of exteroceptive sensors is an integer multiple of the IMU period,
• extrinsic calibration between the IMU and other sensors is known and constant,
• communication range is larger than the sensing distance,
• and exchanged information between agents and sensor measurements arrive with-

out delay, while proprioceptive ones are processed before exteroceptive ones (first
prediction, then correction).

The state space of individual agents’ filters comprises the IMU states (defined in Sec-
tion 2.9) yielding a 15-DoF state vector

x𝐼𝑖
=
[︁

𝒢
𝒢pℐ ; 𝒢

𝒢vℐ ; 𝒢Rℐ ; ℐba ; ℐb𝜔

]︁
𝑖
, 𝑖 ∈ 1, . . . , 𝑁, (3.39)

with 𝒢pℐ ,
𝒢
𝒢vℐ , and 𝒢qℐ as the position, velocity and orientation of the IMU ℐ w.r.t.

the global frame 𝒢 (or navigation frame). ℐb𝜔 and ℐb𝑎 are the estimated gyroscope and
accelerometer biases to correct the related IMU readings. The body {ℬ} and IMU {ℐ}
frame are aligned

(︁
ℬTℐ = I

)︁
. The error-state kinematic used for the IMU propagation and

corrections through exteroceptive sensors is well studied and can be found in Section 2.9.

The global full state is x =
[︂
x𝐼1
x𝐼2

]︂
. The corresponding error-state comprises 30-elements.

MATLAB.
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The absolute position measurement, that considers the displacements between the
sensors attached on the rigid body, is, as described in Equation (2.101), in the form

z#
abs = 𝒢

𝒢p𝒮 + nabs (3.40)

where nabs ∼ 𝒩 (0,Rabs) is a white Gaussian noise vector with the covariance matrix Rabs
and with

𝒢
𝒢p𝒮 = 𝒢

𝒢pℐ + 𝒢Rℐ

(︁
ℬRT

ℐ

(︁
−ℬ

ℬpℐ + ℬ
ℬp𝒮

)︁)︁
. (3.41)

We assume no displacement between the body {ℬ} and position sensor {𝒮} frame, such
that observation can be simplified to 𝒢

𝒢p𝒮 = 𝒢
𝒢pℐ .

The local relative position measurement, that considers the displacements between
senors attached on two rigid bodies, as described in Equation (2.115), is in the form

z#
rel = 𝒮1

𝒮1
p𝒮2

+ n =
(︁

𝒮1T𝒮2

)︁
p

+ nrel (3.42)

where nrel ∼ 𝒩 (0,Rrel) is a white Gaussian noise vector with the covariance matrix Rrel.
We assume no displacement between the body {ℬ} and sensor {𝒮{1,2}} frames, such that
observation simplifies to (︁

𝒮1T𝒮2

)︁
p

= 𝒢RT
ℐ1

(︁
−𝒢

𝒢pℐ1
+ 𝒢

𝒢pℐ2

)︁
. (3.43)

Simulation

We evaluate this configuration on two Machine Hall (MH) sequences (MH_04 for A1 and
MH_05 for A2) of the EuRoC dataset [20]. The trajectory of A1 starts at the origin of the
global frame {𝒢}, while the trajectory of A2 obtained an offset of Δp = [5; 1; 0] from the
origin.

The initial filter state of the individual agents is obtained by drawing a random sample
centered at the ground truth value and given the initial uncertainty, according to Table 3.2.
This demonstrates the self-calibration capabilities and allows analyzing the state conver-
gence. Both agents obtain noisy IMU data at a rate of 200 Hz, which is provided by the
dataset. The noise characteristics are summarized in Table 3.3.

A1 is provided by synthetic absolute IMU position measurements at a rate of 10 Hz
with an isotopic standard deviation of 𝜎abs = 0.1 m, leading to a measurement covariance
Rabs = I𝜎abs. Synthetic relative IMU position measurements between A1 and A2 are
performed from 𝑡 = 5.05 s on with an isotropic standard deviation of 𝜎pos = 0.1 m, a
measurement covariance of Rrel = I𝜎rel, and at a rate of 10 Hz. The measurement activity
using DCSE-DAH of both agents is shown in Figure 3.11.

Figure 3.10 shows that agent A2 is drifting heavily, due to randomly initialized gyro-
scope and accelerometer biases (ℐb𝜔 and ℐb𝑎). Using DDMV agent A2 is diverging and
A1 receives significantly wrong corrections from joint updates, that can fortunately be
compensated by private ones. Thus, our implementation of DDMV is not applicable for
our ESEKF formulation and not included in the following evaluation.

Table 3.4 lists the ARMSE and the mean of the NEES (NEES) over the entire trajectory
(including the drift phases) of the estimated states for different CSE approaches. Therefore,
the ARMSE values for A2 are significantly higher than for A2, although they achieve
similar estimation results towards the end of the trajectory, see Figure 3.12. No remarkable
differences between either fusion techniques are noticeable, while DCSE-DAH is the best
scalable. DCSE-DP* has to be considered as ground-truth as it fuses the observations in an
exact (centralized-equivalent) way. The NEES for all states should be on average 3; lower
than that indicates conservatism, but all states are far from being considered inconsistent.



3. Filter-based Distributed Collaborative State Estimation 95

𝒢
𝒢pℐ

𝒢
𝒢vℐ

𝒢qℐ ℐb𝜔 ℐba

𝜎0 1 m 1 m/s 5 deg 0.1 rad/s 0.05 m/s2

Table 3.2: Isotopic initial uncertainty for the IMU states. Problem is formulated in Sec-
tion 3.5.1.

𝜎a 𝜎ba
𝜎𝜔 𝜎b𝜔

𝜎abs 𝜎rel

0.002 m/s2√Hz 0.003 m/s3√Hz 1.69𝑒−4 rad/s
√

Hz 1.939𝑒−5 rad/s2√Hz 0.1 m 0.1 m

Table 3.3: Isotopic sensor noise characteristics of the accelerometer, gyroscope, absolute-,
and relative position sensor. Problem is formulated in Section 3.5.1.

Figure 3.10: Estimated trajectory comparison using four different CSE fusion techniques:
DCSE-DAH (red, proposed), DCSE-DACC (green), DCSE-DP* (cyan), and DDMV (pur-
ple). A1 receives global pose measurements, while A2 receives correction from joint relative
position measurements with A1, starting from 𝑡 = 5.05 s on. Due to wrongly initialized states,
A2 is drifting heavily, but in most cases it can quickly converge towards ground truth, de-
spite no direct global information being available. The agents fusing joint observation using
DDMV receive strong state correction and A2 starts diverging. The problem is described
in Section 3.5.1. Reused from [76].

The lower and upper 99.97 % bound are 0.05 and 13.93, respectively. For details regarding
estimator credibility and the NEES please refer to Section 2.6.3.

In Figure 3.12, the estimated pose and errors of both agents using DCSE-DAH are
shown. In the first 5.05 s, the estimated pose of A2 is heavily drifting. From the first relative
position measurement on, the position error of A2 remains bounded and the uncertainty
converged fast. The uncertainties of the orientation converge slower, but the error remains
bounded and is not exceeding 7 °.
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Figure 3.11: Shows the processed measurements on agent A1 (top) and A2 (bottom) using
DCSE-DAH. At 𝑡 = 5.05, joint relative position updates are performed between A1 and A2.
Problem is formulated in Section 3.5.1.

(a) Estimated and true pose, and estimation error of agent A1.

(b) Estimated and true pose, and estimation error of agent A2.

Figure 3.12: The error of the estimated position (top row) and attitude (bottom row) in
yellow, blue, red for position x, y, z respectively roll, pitch, yaw of agent A1 (left) and A2
(right)) using DCSE-DAH. At 𝑡 = 5.05 s the relative position measurements between the
robots began and A2 can restore all 6-DoF w.r.t. the absolute position. The estimation errors
of both remain between the 3𝜎 boundaries. Problem is formulated in Section 3.5.1. Adapted
from [76].
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𝒢
𝒢pℐ [m] 𝒢

𝒢vℐ [m/s] 𝒢Rℐ [deg] ℐba [m/s2] ℐb𝜔 [ rad/s]

ID CSE ARMSE NEES ARMSE NEES ARMSE NEES ARMSE NEES ARMSE NEES

1 DCSE-DP* 0.065 3.1 0.086 2.86 0.264 1.56 0.0127 2.8 0.0007 0.33

1 DCSE-DACC 0.065 3.013 0.086 2.7 0.263 1.54 0.0134 3.38 0.0007 0.313

1 DCSE-DAH 0.065 3.017 0.086 2.7 0.263 1.54 0.0134 3.37 0.0007 0.314

2 DCSE-DP* 1.09 2.53 0.48 3.74 1.65 0.8 0.015 0.96 0.0024 1.25

2 DCSE-DACC 1.09 2.35 0.49 3.13 1.93 0.73 0.012 1.06 0.0025 0.92

2 DCSE-DAH 1.09 2.35 0.49 3.13 1.93 0.73 0.012 1.06 0.0025 0.92

Table 3.4: ARMSE and NEES values of the states estimated in the proposed ESEKF.
Real-world IMU measurements from UAVs are used and described in Section 3.5.1, using
different fusion approaches: DCSE-DP*, DCSE-DACC, and the proposed DCSE-DAH. Note:
DCSE-DACC and DCSE-DAH should perform in this setup equivalently. Due to random
noise on measurements a slight deviation is given. Adapted from [76].

3.5.2 Scalability of DCSE algorithms for Aided Inertial Navigation
The main motivation of the proposed DCSE-DAH approach is to reduce the maintenance
effort for estimators with high propagation and update rates, as extension to DCSE-DACC.
The following evaluation is adapted from our evaluation conducted in [76]. In simulation
with 20 agents arranged in a circle, we compare different DCSE fusion techniques, as shown
in Figure 3.13. Each performs a unique take-off (altitude of 20 m, circle (diameter of 10 m,
with a height variation of ±2.5 m), and landing procedure. The duration of a trajectory is
60 s.

The problem formulation and assumptions made, are identical to those of the previous
evaluation, see Section 3.5.1.

To stress the maintenance effort, each agent observes relative position measurements
with three other agents (counter clock-wise on the formed circle), as shown in the measure-
ment activity on agent A1 in Figure 3.15. Thus, each agent know/met in total six other
agents and all agents are directly correlated or indirectly correlated through others. A quar-
ter of the agents are provided with noisy absolute IMU position measurements, meaning
that 14 agents rely on IMU and relative IMU position measurements only. The absolute
position update is received at a rate of 10 Hz, with a standard deviation of 𝜎abs = 0.3 m,
from 𝑡 = 0.1 s on, and with a random message drop rate of 20 %. Local relative position
observations are obtained at a rate of 10 Hz, with 𝜎rel = 0.1 m, and a random message
drop rate of 60 %. All receive unbiased and very noisy IMU measurements at 200 Hz with
a standard deviation of 𝜎acc = 0.01 m/s2 and 𝜎gyr = 0.01 rad/s for the accelerometer and
gyroscope, respectively. All measurements are generated from the ground truth trajectory.
All agent’s states are initialized correctly with a reasonable uncertainty. The size of the
correction buffer ℬ was set to 100 elements, which corresponds to a time horizon of 0.5 s.

Figure 3.16 and Table 3.5 show that DCSE-DAH outperforms DCSE-DACC in terms
of total execution time. Using DCSE-DAH, the execution time of the estimator was in
total 7.87 s, while using DCSE-DACC, it was 11.26 s which is 43 % slower. It can also
be seen, that the processing time of joint observations are in DCSE-DAH approximately
33 % higher as in DCSE-DACC. Concluding, DCSE-DAH keeps constant maintenance
complexity for propagation and private filter steps, if the buffer size satisfies the period
of joint observations. The estimation performance of DCSE-DAH seems to be a bit worse
than DCSE-DACC, despite there should be no difference . Figure 3.14 shows a snapshot
at 𝑡 = 8.5 s of the simulation performing DCSE-DAH.
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Figure 3.13: Shows the true and estimated trajectories using DCSE-DAH of 20 agents.
Problem is formulated in Section 3.5.2.

𝒢
𝒢pℐ [m] 𝒢Rℐ [deg] [ms] [ms] [ms]

algorithm AR AN AR AN 𝑡prop 𝑡priv 𝑡joint

DCSE-DP* 0.076 2.41 1.54 0.69 0.4 35 58

DCSE-DACC 0.105 5.19 1.91 1.04 0.83 0.28 1.4

DCSE-DAH 0.106 5.21 1.94 1.09 0.53 0.12 1.6

Table 3.5: Shows the average over 20 agents of the (i) ARMSE (AR), (ii) NEES (AN),
(iii) average propagation time 𝑡prop, (iv) average private update time 𝑡priv, and (v) average
joint update time 𝑡joint. The agents used an ESEKF formulation with different DCSE algo-
rithms: DCSE-DP*, DCSE-DACC, and the proposed DCSE-DAH. Problem is formulated
in Section 3.5.2. Best values in bold. Adapted from [76].

3.6 Conclusion
Driven by the need to reduce local maintenance effort using fast propagation sensors, we
proposed the DCSE-DAH approach in Section 3.3.5, that performs the forward propaga-
tion of interdependencies at the moment they are needed.

Our experiments manifest that the proposed DCSE-DAH approach outperforms DCSE-
DACC, while achieving the same filter performance in terms of accuracy and credibility. It
can be seen as direct extension to DCSE-DACC that requires additionally a small amount
of statically allocated storage per estimator. DCSE-DAH allows rendering CSE distributed
with support for generic measurement and propagation models, communication is required
only in case of joint observation. By choosing an appropriate buffer size, the maintenance
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effort in propagation and private update steps can be completely shifted to the moment
of joint observations, making DCSE-DAH a fully scalable CSE approach with constant
complexity both in communication and maintenance.

There are numerous interesting open topics, such as analyzing the bandwidth utiliza-
tion and message delays of different fusion strategies in a real-world application using
different communication technologies and protocols.

As future work, an extension for target-tracking (track-to-track fusion) while perform-
ing localization in a group of agents, denoted as CLATT, would be interesting. With re-
spect to DCSE, the main challenge, apart from the unique data association, is to maintain
multiple hypothesis of targets distributed across the agents with limited communication
range, while considering correlation between the agents and the targets properly – which
would be rather trivial in a centralized formulation/realization. Once in range, agents are
able exchange their hypothesis and to find a consensus via, e.g., CI (see Section 2.8.4), to
replace their local beliefs, and to account for the correlations to other (local) states.

Another important aspect is the missing support for delayed/out-of-order updates due
to sensor, communication, and processing delay in the presented DCSE approaches, which
is address in the final chapter Chapter 7.

Figure 3.14: Top view on 20 agents’ a-priori estimates, their 1𝜎 uncertainty bound, as
well as the ground truth position at 𝑡 = 8.5 s. Some are performing joint observations
(indicated by orange lines connecting the corrected poses) that compensate drifting states
due to noisy IMU propagation. As only 6 agents obtain absolute position measurements,
these joint observations between agents guarantee that their uncertainty and error remains
bounded. The problem is described in Section 3.5.2. Image reused from [76].
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Figure 3.15: Measurement activity on A1 using DCSE-DAH. The problem is described
in Section 3.5.2.
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(a) Execution time on A20 using DCSE-DP*.

(b) Execution time on A20 using DCSE-DACC.

(c) Execution time on A20 using DCSE-DAH.

Figure 3.16: Execution time plots of A20, showing the execution time for each filter step:
propagation (blue), private observation (red), and joint observation (yellow). The legends in-
form about the average and the accumulated time for each type. Note: As joint observations
are performed on an interim master, the execution is rather short for the other participants
and lowers the average of joint observations (e.g in Figure 3.16a). The increasing mainte-
nance effort can be clearly seen for DACC in Figure 3.16b, which increases at 𝑡 ≈ 10 s as
joint observations began. Average timings are listed in Table 3.5. Further details are given
in Section 3.5.2. Image reused from [76].



Chapter 4

Filter-based Modular Multi-Sensor Fusion

In this chapter, we are generalizing filter-based multi-sensor fusion from a DCSE perspec-
tive, which we published in [74]. The plug-and-play-like sensor handling of the proposed
estimation framework builds upon the concept of performing local filter steps isolated. By
bridging the gap between multi-agent collaborative state estimation and modular sensor
fusion on a single agent, we propose a novel and generic algorithm for modular sensor fu-
sion with constant maintenance complexity for propagation and private update steps. The
proposed approach is evaluated on both, synthetic and real-world data and is compared
against a native modular sensor fusion approach and two other approaches that have been
ported from the DCSE domain.

4.1 Introduction
Modular, versatile, and robust state estimation at high-rates is a crucial component of
autonomous robotic systems to control and navigate accurately in known, unknown, and
dynamic environments.

Combining sensor information is denoted as sensor fusion, for which typically Bayes
filters or optimization techniques are applied. Optimization-based methods are known
to result in more accurate estimates at the cost of computation time, while filter-based
approaches, due to their recursive nature, provide theoretically optimal estimates at each
correction step (up to linearization and modeling errors).

Each additional sensor in a modular fusion framework may complement others or
may increase the system’s redundancy. However, it also introduces more (computational)
complexity to the overall system, hindering many current approaches to scale well in a
modular fashion for larger numbers of (different) sensor modalities. It is known that the
computation time of a naive filter formulation increases cubically with the state vector
size, and it scales typically linearly with amount of measurements, the update rate, and
sensor delay.

From the perspective of combining a multitude of redundant or complementary ele-
ments in a scalable and modular fashion during mission, one can argue that this is exactly
what distributed collaborative state estimation algorithms do in swarms of robots – with
the difference that in the Modular Multi-Sensor Fusion (MMSF) aspect swarm agents are
now considered sensors of a single platform. On the other hand, scalability and modular-
ity, comes at the cost of computational complexity and is contradictory to the requirement
of low latency for smooth and accurate control.

In view of the above, MMSF can be seen as problem of multi-agent CSE, aiming
for decoupled and distributed estimation that reduces computation, communication, and
maintenance cost [73].

As mention in the literature review (see Section 1.1.7), closely related modular sensor
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fusion approaches are, e.g., [18, 58, 96, 150].
In this chapter, we aim at generalizing multi-sensor fusion for Kalman filter formula-

tions originating from a CSE perspective. Our approach presents a modular, yet scalable
MMSF strategy, capable of processing not only measurements from exteroceptive sensors
tightly-coupled for system-dynamics correction, but also of including isolated private and
joint sensor observations for and between different exteroceptive sensors (see Section 4.2).

Nonetheless, it leads to suboptimal estimation results as it is based on the DCSE-
DAH approach described in Section 3.4.6. It allows us to decouple estimation problem
into individual nodes which are combined in our MMSF-DAH approach to a modular
estimator with partially coupled outputs, but decoupled inputs. Depending on the ap-
plication, MMSF-DAH can be configured according to the user’s need and increases the
flexibility and re-usability, as e.g., [18, 138]. The framework inherently supports plug and
play, i.e. hot swapping, of sensors during mission, in case an initial belief and other sensor
relevant information, such as sensor type, noise characteristics, unique identified, etc., are
provided.

In our experiments on real data using an ESEKF for an AINS, we demonstrate that
filter decoupling strategies used in CSE reduce the compute complexity also in MMSF for-
mulations. The here proposed MMSF-DAH approach outperforms other fusion strategies
we ported from DCSE to MMSF formulations regarding scalability and timing, while keep-
ing up with the accuracy and credibility of centralized-equivalent and thus, statistically
optimal architectures (Figure 4.3).

Our contributions are:
• Bridging the gap between CSE and MMSF: three existing DCSE approaches were

implemented as modularized and decoupled MMSF frameworks.
• MMSF-DAH: A novel scalable and general multi-sensor fusion strategy with constant

maintenance complexity for propagation and private update steps (if buffer history
suffices).

• Comparison of the four different CSE fusion strategies and a classical MMSF ap-
proach using real-world data.

In the following, we briefly discuss related work, followed by a problem formulation
in Section 4.2, and a description of our proposed MMSF-DAH approach in Section 4.3.
In Section 4.4, we (i) evaluate the accuracy and consistency on real-world data, and (ii)
the scalability with an increasing number of sensors among different fusion techniques.
Conclusions are made in Section 4.5.

4.2 Problem Formulation

The problem formulation coincides with the one for the Isolated Kalman Filtering (IKF)
paradigm in Section 6.2. In this chapter, we particularly address the problem handling and
fusing multiple exteroceptive sensors in a modular (plug and play) fashion for an Aided
Inertial Navigation System (AINS). In order to fuse the obtained sensor data properly, the
spatial position or pose (extrinsic) with respect to the IMU or an common body reference
frame {ℬ} needs to be known. If the sensors are not synchronized via a hardware trigger
or a software-based synchronization protocol, e.g., NTP [100], the time-offset between
internal reference times or the sensor delays needs to be provided.

Please note that this approach is not limited to sensor related states only, e.g., the
position of landmarks, visual feature, tracked objects can be modeled in individual filter
instances, which can be added and removed online in a modular and lightweight fashion
to the Aided Inertial Navigation System (AINS).

The support for plug-and-play lowers the technology barrier and if the system’s sensor
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Figure 4.1: Block diagram of the proposed MMSF-DAH algorithm, consisting of an in-
stance handler H maintaining various IKF instances (nodes) of a specific type. The sensor
suite provides measurements to the H, which again delegates them to the appropriate node
S, which performs the isolated filter steps. For joint observation, information exchange be-
tween IKF instances is needed, which is handled locally through the H. Details are provided
in Section 4.2.

configuration allows a self-calibration of sensor intrinsic, extrinsic parameters or time
offsets, the manufacturing process can be simplified, as discussed more thoroughly in
MIMC-VINS by Eckenhoff et al. [36].

Either the sensor related parameters are assumed to be known a-priori , thus provided
as constant values to the estimator, or if the parameters are observable, with an initial
belief. Meaning, that each sensor has a certain parameter space, sensor specific character-
istic (model), and a configuration (spatial relation, operation modes, etc.) that need to be
accounted in the modular estimation framework.

Each sensor can be modeled as stochastic process (see Equation (6.1c)), in the simplest
case with zero dynamics and no process noise. If the spatial configuration is not perfectly
rigid or the initial calibration changes with temperature or humidity, one can model some
process noise. A fundamental assumption of IKF is that the process noise of the individual
sensors are not correlated, which is typically the case and needed for isolated sensor state
propagation. For instance, the rate random walk of an IMU is independent of the tem-
perature drift of a barometer, even if they are attached rigidly with respect to a common
reference frame. This stochastic process can be estimated using the IKF paradigm in a
sensor specific estimator deriving from the abstract IKF formulation, which is added as
node to the modular Aided Inertial Navigation System (AINS).

Besides the modularity and abstraction provided by the IKF paradigm, it allows re-
ducing the computational complexity over a modular centralized formulation. A potential
downside regard convergence and the observability might arise, as discussed in Section 6.5.

4.3 Decoupled Approximated History based MMSF
In this section, the architecture of a local fusion entity, the Instance Handler H, to unify
𝑁 locally held IKF instances (nodes) is proposed, as shown in Figure 4.1. A set of 𝑁 het-
erogeneous sensors provide information, e.g., sensor measurements, to the handler H. Each
sensor needs a unique identifier and belongs to a known class of sensor types, which defines
the estimated parameter/state space, constant parameters, and sensors dynamic model,
and a method to process sensor-specific measurement. Further, each sensor is associated
to an IKF instance (node), maintaining a history of data as described in Section 6.3.1, a
unique identified idS and a handle HA in order to access other IKF instances through the
handler, in case of isolated joint observations.

The fusion entity H maintains handles to these IKFs instances, which can be added
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and removed at any point in time. Additionally, a sorted history of measurements 𝒵H is
maintained in the fusion entity to correct out-of-order measurements due to, e.g., latency.
Technically, each IKF holds a history of measurements 𝒵S itself, but as all instances are
running in the same process and are managed by the fusion entity, it simplifies the handling
of delayed measurements.

The measurement data M is provided to the handler H and needs to contain some
meta information as defined in Equation (6.6). Once a measurement is received by the
handler H (Algorithm 4.1), one can associate the corresponding estimator based on the
identifier idS in the measurement data M and delegate it to the sensor-specific IKF node
(Algorithm 4.3). Typically, measurements are received after the event of perception. Thus,
a timestamp 𝑡𝑘 referring to that event must be provided in M, the sensor delay needs to
be known a-priori , or be estimated online.

The sensor node S is able to distinguish from different measurement types according
to the meta information Type in M. According to the field Type, the sensor node S is
performing either an isolated propagation (see Section 6.3.3), private (see Section 6.3.3),
or joint update (see Section 6.3.3) step.

A private observation means that the observation/measurement relates just to the sen-
sor’s state. Meaning that it is agnostic (transparent) to other sensor states. For instance,
a barometer sample is correcting a local pressure estimate. On the other hand, a joint
observation means that estimates of various other sensors are rendered directly or indi-
rectly observable by the measured quantity. For instance, the estimated temperature and
pressure of reference station is used in a joint observation with a local pressure estimate
to estimate the height based on the standard atmospheric model (see Section 2.9.4). Since
isolated joint observations are related to at least one other IKF instance, access to these
instances is realized by a handle to HA which allows access to all other IKF instances.

After a delayed measurement is processed and if it was not rejected from the NIS-based
hypothesis check (Algorithm 4.7), all elements (beliefs, cross-covariance factors, correction
terms) after the measurement event are deleted from all buffers of the IKF instances.
Then, all interim measurements, held in 𝒵H, are re-applied in order (see Section 6.3.4).
Finally, the new measurement M is inserted in the correct order into the measurement
buffer 𝒵H (Algorithm 4.1).

4.3.1 Algorithm

Algorithm 4.1: MMSF-DAH: handle sensor observation
Input : {𝒳 ,𝒞,ℬ,ℳ,𝒵}H,M

1 {𝑡𝑘, idS𝑖
, z𝑘

S𝑖
,R𝑘

S𝑖
,Type} = M

2 S𝑖 = ℳH(idS𝑖
)

3 /* process measurement as sensor specific observation * /
4 /* e.g. propagation, private, joint (bi, tri, quad, ...) */
5 rejected = S𝑖 → process_sensor_measurement(M) (Alg. 4.3)
6 if !rejected then
7 redo_updates_after_t({𝒳 ,𝒞,ℬ,ℳ,𝒵}H, 𝑡

𝑘) (Alg. 4.2)
8 end
9 𝒵(𝑡𝑘) = M // store sensor measurement
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Algorithm 4.2: MMSF-DAH: redo_updates_after_t
Input : {𝒳 ,𝒞,ℬ,ℳ,𝒵}H, 𝑡

𝑘

1 /* delete newer corrections, cross-cov and states! */
2 delete({𝒳 H𝑖,𝒞H𝑖,ℬH} > 𝑡𝑘)
3 /* redo existing observation after 𝑡𝑘! */
4 for M𝑖 in {sort(𝒵H) > 𝑡𝑘} do
5 {𝑡𝑖, idS𝑙

, z𝑖
S𝑙
,R𝑖

S𝑙
,Type} = M𝑖

6 S𝑙 = ℳH(idS𝑙
)

7 rejected𝑖 = S𝑙 → process_sensor_measurement(M𝑖) (Alg. 4.3)
8 end

Algorithm 4.3: MMSF-DAH: process sensor measurement
Input : 𝒳 ,𝒞,ℬ, id,𝒵, 𝑡𝑘, z𝑘

S,R
𝑘
S

1 rejected = True
2 if propagation then
3 propagate(. . .) (Alg. 4.8)
4 else if private observation then
5 rejected = private_observation(. . .) (Alg. 4.9)
6 else
7 rejected = joint_observation(. . .) (Alg. 4.10)
8 end

Algorithm 4.4: MMSF-DAH: get_belief
Input : 𝒳 𝑖,ℬ𝑖, id𝑗 , 𝑡

𝑘

1 if not exist(𝒳 𝑖(𝑡
𝑘) then

2 {x̂𝑎
𝑖 ,Σ

𝑎
𝑖𝑖, 𝑡

𝑎} = max(find(𝒳 𝑖 < 𝑡𝑘))
3 /* predict from previous state to current timestamp */
4 x̂𝑘

𝑖 ,Σ
𝑘
𝑖𝑖,Φ

𝑘|𝑎 = propagate𝑖(x̂
𝑎
𝑖 ,Σ

𝑎
𝑖𝑖, . . . , 𝑡

𝑎, 𝑡𝑘) (Alg. 4.8)
5 ℬ𝑖(𝑡

𝑘) = Φ𝑘|𝑎

6 else
7 {x̂𝑘

𝑖 ,Σ
𝑘
𝑖𝑖} = 𝒳 𝑖(𝑡

𝑘)
8 end

Algorithm 4.5: MMSF-DAH:check_horizon
Input : ℬ,𝒞, 𝑡𝑘

1 𝑡o = min(find(ℬ < 𝑡𝑘)) (oldest correction term) (Equation (6.10))
2 𝑡𝑚 = 𝑡o + (𝑡𝑘 − 𝑡o)/2 (half of the time horizon Equation (6.11))
3 M𝑚|o = compute_corr(ℬ, 𝑡𝑚, 𝑡o) (Alg. 4.6)
4 for {id} in 𝒞 do
5 if find(𝒞(id)) ≡ 𝑡o (Equation (6.12)) then
6 𝒞(id) = {M𝑚|o𝒮𝑜(−), 𝑡𝑘} (forward prop. Equation (6.13))
7 end
8 end

Algorithm 4.6: MMSF-DAH: compute_correction
Input : ℬ𝑖, 𝑡

𝑎, 𝑡𝑘

1 M𝑘|𝑎
𝑖 = I

2 𝑡𝑏 = min(ℬ𝑖 > 𝑡𝑎)(
3 for 𝑙← 𝑡𝑏 to 𝑡𝑘 do
4 M𝑘|𝑎

𝑖 = ℬ𝑖(𝑙)M
𝑘|𝑎
𝑖 (Equation (6.8))

5 end
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Algorithm 4.7: MMSF-DAH: check_NIS
Input : r,S, 𝑝 = 0.997

1 𝑠 = rTS−1r // Mahalanobis distance squared
2 DoF = length(r) (Degrees of freedom)
3 /* Inverse of the chi-square cumulative distribution */
4 outlier = (𝑠 > chi2inv(𝑝,DoF)) (see Section 2.6.2)

Algorithm 4.8: MMSF-DAH: Isolated Propagation on S𝑝

Input : x̂𝑘−1
𝑝 ,Σ𝑘−1

𝑝𝑝 ,ℬ𝑝,u
𝑘,N𝑘,𝒞𝑝, 𝑡

𝑘−1, 𝑡𝑘

1 Φ𝑘|𝑘−1
𝑝 =

[︁
𝜕𝜑𝑝(x𝑝,u)

𝜕x𝑝
(x̂𝑝,u)

]︁𝑘|𝑘−1

2 G𝑘|𝑘−1
𝑝 =

[︁
𝜕𝜑𝑝(x𝑝,u)

𝜕u (x̂𝑝,u)
]︁𝑘|𝑘−1

3 Q𝑘|𝑘−1 = G𝑘|𝑘−1
𝑝 N𝑘(G𝑘|𝑘−1

𝑝 )T

4 x̂𝑘
𝑝 = 𝜑𝑝(x̂𝑘−1

𝑝 ,u𝑘)
5 Σ𝑘

𝑝𝑝 = Φ𝑘|𝑘−1
𝑝 Σ𝑘−1

𝑝𝑝 (Φ𝑘|𝑘−1
𝑝 )T + Q𝑘|𝑘−1

6 ℬ𝑝

(︁
𝑡𝑘
)︁

= Φ𝑘|𝑘−1 // insert into sorted buffer
7 check_horizon(ℬ𝑝,𝒞𝑝, 𝑡

𝑘) (Alg. 4.5)

Algorithm 4.9: MMSF-DAH: Isolated Private Observation on S𝑝

Input : x̂𝑘(−)
𝑝 ,Σ𝑘(−)

𝑝𝑝 ,ℬ𝑝,𝒵𝑝, z
𝑘
𝑝,R

𝑘
𝑝

1 H𝑝 =
[︁

𝜕ℎ(x𝑝)
𝜕x𝑝

(x̂𝑝)
]︁𝑘(−)

2 S𝑝 = H𝑝Σ𝑘(−)
𝑝𝑝 HT

𝑝 + R𝑘

3 K𝑝 = Σ𝑘(−)
𝑝𝑝 HT

𝑝 (S𝑝)−1

4 r = z𝑘
𝑝 � ℎ𝑝(x̂𝑘(−)

𝑝 )
5 rejected = check_NIS(r,S𝑝) (Alg. 4.7)
6 if not rejected then
7 x̂𝑘(+)

𝑝 = x̂𝑘(−)
𝑝 �K𝑝r

8 Σ𝑘(+)
𝑝𝑝 = (I−K𝑝H𝑝)Σ𝑘(−)

𝑝𝑝

9 ϒ𝑘
𝑝 = (I−K𝑝H𝑝)

10 ℬ𝑝

(︁
𝑡𝑘
)︁

= ϒ𝑘
𝑝ℬ𝑝

(︁
𝑡𝑘
)︁

11 𝒳 𝑝(𝑡𝑘) = {x̂𝑘(+)
𝑝 ,Σ𝑘(+)

𝑝 }
12 end
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Algorithm 4.10: MMSF-DAH: Isolate Joint Observation of sensors S and C
Input : {𝒳 ,𝒞,ℬ, id}{C,S}, 𝑡

𝑘, z𝑘
S,R

𝑘
S

1 /* get previous cross-covariance factors */
2 {𝒮𝑚

SC, 𝑡
𝑚} = max(find(𝒞S(idC) < 𝑡𝑘))

3 {𝒮𝑚
CS, 𝑡

𝑚} = max(find(𝒞C(idS) < 𝑡𝑘))
4 /* get existing beliefs or predict beliefs */
5 x𝑚

{C,S} = get_belief(𝒳 {C,S},ℬ{C,S}, 𝑡
𝑚) (Alg. 4.4)

6 M𝑘|𝑚
{C,S} = compute_correction(ℬ{C,S}, 𝑡

𝑚, 𝑡𝑘) (Alg. 4.6)
7 /* propagate previous cross-covariances */
8 Σ𝑘

CS = (M𝑘|𝑚
C 𝒮𝑚

CS)(M𝑘|𝑚
S 𝒮𝑚

SC)T

9 /* stack beliefs*/

10 Σ𝑘(−)
𝑝𝑝 =

⎡⎣ΣC ΣCS

ΣT
CS ΣS

⎤⎦𝑘

11 x̂𝑘(−)
𝑝 =

⎡⎣x̂C

x̂S

⎤⎦𝑘

12 H𝑝 =
[︁

𝜕ℎS(xC,xS)
𝜕xC

(x̂C, x̂S) 𝜕ℎS(xC,xS)
𝜕xS

(x̂C, x̂S)
]︁𝑘(−)

13 S𝑝 = H𝑝Σ𝑘(−)
𝑝𝑝 HT

𝑝 + R𝑘

14 K𝑝 = Σ𝑘(−)
𝑝𝑝 HT

𝑝 (S𝑝)−1

15 r = z𝑘
S � ℎS(x̂𝑘(−)

𝑝 )
16 rejected = check_NIS(r,S𝑝) (Alg. 4.7)
17 if not rejected then
18 x̂𝑘(+)

𝑝 = x̂𝑘(−)
𝑝 �K𝑝r

19 Σ𝑘(+)
𝑝𝑝 = (I−K𝑝H𝑝)Σ𝑘(−)

𝑝𝑝

20 /* Note: split Σ𝑘(+)
𝑝𝑝 and x̂𝑘(+)

𝑝 again */
21 𝒮𝑘(+)

CS = Σ𝑘(+)
CS

22 𝒮𝑘(+)
SC = I

23 Λ𝑘
{C,S} = Σ𝑘(+)

{C,S}(Σ𝑘(−)
{C,S})−1

24 ℬ{C,S}

(︁
𝑡𝑘
)︁

= Λ𝑘
{C,S}ℬ{C,S}

(︁
𝑡𝑘
)︁

25 𝒞{C,S}(id{S,C}) = {𝒮𝑘(+)
{CS,SC}, 𝑡

𝑘}
26 𝒳 {C,S}(𝑡𝑘) = {x̂𝑘(+)

{C,S},Σ
𝑘(+)
{C,S}}

27 end
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4.4 Evaluation
The experiments are done in our custom MATLAB framework, that allows to load real
data from the EuRoC dataset [20] by Burri et al. , as shown in Figure 4.2. Exteroceptive
measurements (private or joint observations) are generated based on the ground truth
trajectory modified by the sensors’ calibration states and noise parameters. The noisy and
biased real-world IMU samples provided by the datasets are used without modifications.
Finally, all measurements are processed in the instance handler H. It is maintaining multi-
ple IKF instances/nodes S, while communication between instances is handled locally. The
filter instances and handler support different fusion strategies as listed in Section 4.4.1.

For the scalability and accuracy evaluation, we add different exteroceptive sensors to
a modular ESEKF using an IMU as propagation sensor. The sensor suite’s state vector
might consist of a varying number of (i) absolute position sensors, e.g., a GNSS sensor,
(ii) a barometers, (iii) an atmospheric sensors (ATM):

xℐ =
[︁

𝒢
𝒢pℐ ,

𝒢
𝒢vℐ ,

𝒢qℐ , ℐb𝜔 , ℐb𝑎

]︁
(4.1)

x{𝒜ℬ𝒮,ℬ𝒜ℛ𝒪} =
[︁

ℬ
ℬp𝒮

]︁
(4.2)

x𝒜𝒯 ℳ = [𝑃𝑎𝑡𝑚, 𝑇𝑎𝑡𝑚] (4.3)

with 𝒢
𝒢pℐ ,

𝒢
𝒢vℐ , and 𝒢qℐ as the position, velocity and orientation of the IMU ℐ referring to

the global frame 𝒢. ℐb𝜔 and ℐb𝑎 are the estimated gyroscope and accelerometer biases to
correct the related IMU readings. ℬ

ℬpℐ and ℬqℐ as constant position and orientation of the
IMU ℐ referring to the body frame ℬ. Sensors rigidly attached with respect to the body
reference frame, require a spatial calibration state ℬ

ℬp𝒮 , specifying the translation to the
sensor frame 𝒮. The static atmospheric reference sensor estimates the local temperature
𝑇𝑎𝑡𝑚 in [°𝐶] and pressure 𝑃𝑎𝑡𝑚 in [Pa] via private observations. Barometer readings in [Pa]
are processed as joint observations incorporating the IMU and ATM (x{ℐ,𝒜𝒯 ℳ,ℬ𝒜ℛ𝒪}).
The error-state kinematics for the IMU propagation and corrections through exteroceptive
sensors is covered in Section 2.9. The evaluation is performed single-threaded in MATLAB
on an AMD Ryzen 7 3700X CPU with a 32 GB DDR4 RAM.

4.4.1 Strategy Overview
We ported different CSE strategies to a MMSF formulation with support for delayed
measurements: Centralized equivalent (MMSF-C), decoupled propagation (MMSF-DP),
decoupled approximated cross-covariance (MMSF-DACC) and tested them as well as a
state-of-the-art native modular approach (MMSF-MaRS) against our here proposed de-
coupled approximated history (MMSF-DAH) approach.

1. MMSF-C: Modularized, but centralized equivalent implementation and corresponds
to CCSE (see Section 3.4.2).

2. MMSF-DP: Using the cross-covariance factorization proposed by Roumeliotis and
Bekey [121], allowing decoupled propagation. Observations are performed on the full
state thus it corresponds to DCSE-DP* (see Section 3.4.4).

3. MMSF-MaRS: Decoupled on-demand propagation of cross-covariance factors using a
buffer for Φ. Originally, it is considering just cross-covariance between a core sensor
and other sensors. Missing interdependencies between sensors and missing correction
terms may lead to invalid joint covariances, which are then corrected by different
Eigenvalue correction strategies as described by Brommer et al. in [18].

4. MMSF-DACC: Like MMSF-DP with approximations proposed by Luft et al. [95]
directly applied on cross-covariance factors, to perform observation isolated and cor-
responds to DCSE-DACC (see Section 3.4.5).
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Figure 4.2: Shows the block diagram of the single agent’s simulation framework used
in Section 4.4. The agent’s estimation framework is defined by a sensor suite consisting
of multiple sensor models. It can be loaded and stored into a human-readable dataset or
be generated from a set of emulated sensors. The sensor suite allows generating a set of
measurements, initial beliefs, and to obtain the true state, which is a prerequisite for the
ANEES evaluation. Based on the sensor suite’s sensor models, each agent’s instance handler
H instantiates an appropriate sensor instance. All measurements from the sensor suites
are processed sequentially and chronologically sorted, while individual sensor delays are
configurable.

5. MMSF-DAH: Extending MMSF-DACC such that correction terms are buffered and
applied on demand onto the cross-covariance factors. This allows constant complexity
in propagation and private observations if the buffer history suffices as described in
the CSE formulation of [76] and corresponds to DCSE-DAH (see Section 3.4.6).

4.4.2 Accuracy
We evaluate the filter performance using the Machine Hall sequences (MH_{01 . . . 05}) of
the EuRoC dataset [20] and different fusion strategies. The emulated sensor suite consists
of (i) an IMU providing noisy and biased measurements at a rate of 200 Hz, (ii) three
absolute position sensors providing measurements at 5 Hz with a message drop rate of 20 %,
a standard deviation of 𝜎𝑎𝑏𝑠 = 0.25 m, a delay of 0.05 s, and overlapping sensor switching
phases (Figure 4.4), and (iii) a barometer providing pressure readings at a rate of 10 Hz,
a delay of 0.1 s, a message drop rate of 20 %, and a standard deviation of 𝜎𝑏𝑎𝑟𝑜 = 0.5 Pa
(inspired from, e.g., the Bosch BME280 sensor). All states are initialized with a random
offset and a reasonable uncertainty.

Table 4.1 lists the ARMSE (short AR), the mean of the NEES (NEES, short AN),
and the average execution times for propagation and joint measurements (𝑡prop and 𝑡joint
respectively) over five sequences (including the convergence phases) of the estimated states
for different MMSF approaches. Note, ΔAR and ΔAN are with respect to the centralized
equivalent (MMSF-C) method.

As expected, MMSF-DP behaves similar to MMSF-C at the cost of computation time
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Figure 4.3: Estimated trajectory comparison between different CSE strategies we ported to
MMSF formulations and our MMSF-MaRS approach: DAH (green, ours), DACC (purple),
DP (red), MaRS (orange), and C (blue). Due to wrongly initialized states, some irregularities
during the state convergence phase are noticeable. DP, DACC, and DAH perform almost
identical as the statistically optimal strategy (C). DAH and MMSF-MaRS are fastest. The
problem is described in Section 4.4.2. Image is reused from [74].
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Figure 4.4: Measurements processed using MMSF-DAH on the MH_01 dataset. The ab-
solute position measurements are interleaved and some are rejected. There were at most five
sensor active at a time. The problem is described in Section 4.4.2. Image from [74].

(see Table 4.2) while MMSF-DACC and MMSF-DAH perform slightly worse (in absolute
values) due to their approximations. Another decreasing step is shown for MMSF-MaRS
due to further approximations and neglecting correction terms in update steps (see Fig-
ure 4.3 and Table 4.1). The NEES for all states should be in average 3. All states are far
from being considered inconsistent in this experiment. Regarding the average execution
time MMSF-MaRS and MMSF-DAH are the fastest approaches.

4.4.3 Scalability and latency
The scalability is demonstrated by adding sensors that provide private and joint observa-
tions to a sensor suite. It consists again of (i) an IMU providing noisy and biased measure-
ments at a rate of 200 Hz, (ii) 𝐾 absolute position sensors at a rate of 5 Hz, 𝜎𝑎𝑏𝑠 = 1 m
and a sensor delay 𝑡𝑑𝑒𝑙𝑎𝑦, (iii) 𝐾 atmospheric sensors providing temperature and pressure
information at 1 Hz and 4 Hz, 𝜎𝑇 = 1 °C and 𝜎𝑃 = 1 Pa, respectively, and a sensor delay
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EuRoC avg(MH{1,2,3,4,5})
𝒢
𝒢pℐ [m] 𝒢Rℐ [deg] [ms] [ms]

MMSF ΔAR ΔAN ΔAR ΔAN 𝑡𝑝𝑟𝑜𝑝 𝑡𝑗𝑜𝑖𝑛𝑡

C - - - - 22.8 350

DACC 4e-8 -7.9e-5 -1.6e-5 -2.5e-5 3.7 51.8

DAH -1.2e-7 -9.7e-5 -4e-6 -2.1e-5 3.2 44.6

DP -7e-16 -3.4e-14 -7e-14 -4e-13 4 84.9

MaRS 0.0152 0.438 0.085 0.24 3.2 44.7

AR AN AR AN

C 0.104 2.82 2.12 1.9

Table 4.1: Average absolute trajectory error over five sequences and different fusion strate-
gies compared to the exact solution (C) (i) ARMSE (AR), (ii) NEES (AN), (iii) average
propagation time 𝑡prop, (iv) average joint update time 𝑡joint. Different fusion approaches were
used: MMSF-C, MMSF-DACC, MMSF-DAH, MMSF-DP, and MMSF-MaRS. The problem
is formulated in Section 4.4.2. Best values in bold. Adapted from [74].

𝑡𝑑𝑒𝑙𝑎𝑦. In our evaluation, we set 𝐾 = {1, 3, 5} and 𝑡𝑑𝑒𝑙𝑎𝑦 = {0, 0.1, 0.2} s.
As shown in Figure 4.6 and in Table 4.2, MMSF-C performs the worst (note that

it should not be confused with a single full-state estimator, as the modularized version
imposes a management overhead). Instead, MMSF-DP performs due to the high IMU
propagation rate far better, while providing statistically same results.

MMSF-DACC and MMSF-DP perform the same propagation steps, while MMSF-
DACC performs observations decoupled. As just the participants are required, the update
execution time can be drastically reduced. MMSF-MaRS and MMSF-DAH perform a
slightly different propagation strategy, than the previous ones by adding the correction
terms in a buffer.

At zero latency, MMSF-DACC is the fastest strategy, but with increasing sensor delay,
using a buffer for correction terms as done in MMSF-MaRS and MMSF-DAH is faster.
Compared to MMSF-DACC and MMSF-DAH, MMSF-MaRS is not considering correc-
tion terms for private and joint updates which degrades the accuracy as discussed in Sec-
tion 4.4.2. Figure 4.5 shows that MMSF-DACC scales in maintenance linearly with 𝒪(𝐶),
where 𝐶 denotes the number of cross-covariance factors to be corrected, while MMSF-
DAH scales with 𝒪(1). Therefore, the buffer management overhead in MMSF-DAH, e.g.,
to check the time horizon (Algorithm 4.5) is with increasing number of sensors and delay
smaller than MMSF-DACC’s cross-covariance maintenance. This makes MMSF-DAH the
favorite choice for complex real-world applications (see Table 4.2 last few columns).
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Figure 4.5: Average IMU propagation time with increasing number of non-delayed extero-
ceptive sensors as described in Section 4.4.3. It can be seen that the propagation time using
MMSF-DACC (purple) increases with the total number of sensors, while MMSF-MaRS (red)
and MMSF-DAH (green, ours) remain unaffected. Image reused from [74].
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Figure 4.6: Scalability: Total execution over an increasing number of sensors and increasing
sensor delay on a logarithmic scale (y-axis) for different fusion strategies and different filter
steps. The problem is described in Section 4.4.3. Image reused from [74].
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4.5 Conclusion
We have shown that distributed fusion techniques from Collaborative State Estimation
(CSE) can be adapted and applied to decouple sensor estimates allowing Modular Multi-
Sensor Fusion (MMSF) on a single agent. We hope that this new perspective on modular
estimators from a CSE point of view paves the way towards efficient, consistent, and
scalable generalized modular estimators.

In total, we have adapted three strategies to the MMSF domain and included the
native MMSF approach MMSF-MaRS in comparisons against our proposed MMSF-DAH
approach. Our evaluations on MMSF-DAH have shown (i) that using approximated correc-
tion terms for sensor observation and considering inter-sensor correlations is advantageous
in terms of accuracy, and (ii) that using a common correction buffer for all factorized
cross-covariances further reduce the computational effort over MMSF-DACC and other
CSE-based methods.

This renders MMSF-DAH (i) ideal for high sensor rates, as it is typically the case for
ESEKF based on IMU propagation, (ii) capable of performing any-sensor to any-sensor
observations and private observations, (iii) re-applying fast updates after delayed (out-
of-order) updates, and (iv) with minimal overhead for maintaining temporally disabled
sensors.

Still, one remarkable aspect is, that the observability of hidden states and thus the
self-calibration capabilities might be affected, as discussed in Section 6.5. In these cases,
a two-step-approach might be implemented. If the conditions for self-calibration are given
(sufficient motion in case of AINS), the instance handler could perform the estimation cen-
tralized equivalent like in MMSF-DP. Once the sensor parameters are calibrated, isolated
observations can be performed again to reduce the computational complexity.

Furthermore, a non-modular estimator, which is tailored for a problem at hand and
operating on the full-state can achieve very good performance, but modifying or scaling
them up is difficult and limits the re-usability of the tailored implementation for other
applications [138].

In future work, we consider extending our approach to add support for target tracking,
where each target is modeled as individual IKF node, that is identified (maybe classified
to decided for a proper model/filter specialization), added, tracked, and removed from
the filter once it is not appearing for a certain duration. Landmark estimation and self-
calibration was successfully addressed in the next chapter Chapter 5.

Another interesting addition would be differential fusion of sensor information, where a
stationary reference sensor is used to compensate local environmental changes, e.g., a local
stationary reference barometer for a barometric altimeter as illustrated in Figure 2.10, or a
local stationary reference magnetometer/sun-sensor which is used as reference heading for
an onboard magnetometer/sun-sensor to render a relative orientation about the gravity
vector observable.

Finally, we plan to support multi-state constraints (relative time constraints between
estimates) based on stochastic clones of certain states, which is an integral part of VINSs [46]
or Radar-Inertial Odometry (RIO) [107]. This requires special care, since observability
constraints need to be considered for our AINS formulation. Regarding robustness and
resilience to single point of failures, support for multiple proprioceptive sensors is missing,
like e.g., in [36] by introducing hard constraints between propagation sensors.



Chapter 5

Filter-based Modular Ultra-Wideband Aided
Inertial Navigation

In this chapter, we demonstrate our filter-based MMSF-DAH approach’s capability of pro-
cessing information in a fully meshed UWB ranging network efficiently. We verify extensive
Monte Carlo simulations on synthetic and real data for MAVs that the application of our
CSE-inspired method in such a context breaks the computational barrier. Otherwise, it
would, for the sake of complexity-reduction, prohibit the use of all available information
or would lead to significant estimator inconsistencies due to coarse approximations. The
content of this chapter was published in [75].

5.1 Introduction and Related-Work
Accurate localization is a crucial component of autonomous robotic systems, e.g., service
robots, warehouse pallet robots, etc., to control and navigate accurately in unknown and
GNSS-denied environments. The demand for a cost friendly, scalable and accurate in-
door positioning infrastructure is growing. Typically, range-based localization systems use
TDOA, TOA, RTOF [115] or RSS metrics/lateration methods to determine the distance
between the antennas [127]. A promising technology for both data transmission and lo-
calization is based on UWB radio frequency (RF) signals [127]. It has desirable features
for estimating distances between two transceivers, as its large bandwidths allow the UWB
receiver to accurately estimate the arrival time of the first signal path [127].

In order to estimate a unique 3-DoF position of a non-stationary UWB device/node
(tag), classical mulitlateration approaches requires simultaneous range measurements from
at least four known stationary and non-coplanar UWB nodes (anchors). The precision of
the mulitlateration is strongly dependent on (i) the relative pose between the ranging
modules’ antennas [86], (ii) the placement of stationary modules (anchors) as it influences
the PDOP of the mobile modules, and (iii) multipath effects and non-line-of-sight (NLOS)
condition may lead to wrong distance estimates [61]. Consequently, it is reasonable to
combine range measurements of mobile modules with complementary sensors, e.g., an IMU
and a barometer, as depicted in Figure 5.1, to increase the robustness against dropouts,
precision, and accuracy [14, 49, 62, 116, 134, 140].

Hol et al. show in [61], that tightly fusing range measurements with inertial mea-
surements obtained by an IMU in a probabilistic fusion algorithm allows (i) to recover
a 6-DoF pose, (ii) to bridge periods with limited UWB range measurements, and (iii) to
successfully detect and reject outliers. By assuming known and static anchor locations,
unmodeled errors will degrade the estimation performance, in case the anchor positions
were not accurately measured initially. To address this issue, calibration routines to es-

117
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Figure 5.1: Spatial frame constellation of the proposed UWB-AINS framework. Image
reused from [75].

timate the position of deployed anchors were proposed in, e.g., [14, 16, 54, 58, 62, 112,
134].

In [58], Hausman et al. proposed a multi-sensor fusion approach combining inertial
sensor data with loosely coupled vision-based pose measurements, GPS measurements,
and tightly-coupled UWB range measurements for precision landing. They proposed a
Linear Least Squares (LLS) initialization scheme for anchors, based on estimated tag
positions, that provides the estimator with an initial belief for three estimated anchor
positions.

In recent years, relative state estimation approaches to eliminate the need for stationary
anchors in GPS-denied environment have been presented in [52, 53, 132, 153, 167]. For
instance, Guo et al. present in [52, 53] an infrastructure-free cooperative approach to
estimate the positions of neighboring MAVs. Similarly, Xu et al. presented in [153] an
optimization-based, fully decentralized visual-inertial-UWB fusion framework for relative
state estimation in a swarm of MAVs. Nguyen et al. extended in [116] a state-of-the-art
optimization-based VIO algorithm to fuse camera, IMU and UWB range measurements
from a single anchor to reduce the drift. Having only a single anchor in this configuration
allows rendering the relative position with respect to the navigation frame observable,
but the orientation about the gravity vector is still unobservable. Therefore, at least two
anchors need to be known to achieve a fully observable system by assuming the gravity
vector is parallel to one of the navigation frames axes, e.g., in our case, the z-axis.

Song et al. fused in [140], LIDAR, UWB, and inertial measurements in an EKF-SLAM
algorithm, while the UWB ranging measurement reduced accumulated errors in the pro-
posed LIDAR-based SLAM algorithm.

Recently, Goudar and Schoelling investigated in [49] on the spatial-temporal self-
calibration of the UWB tag in a tightly-coupled UWB-aided INS. They proof the local
identifiability of the time delay between the IMU and the UWB-tag by investigating on
the input-output representation of the system. The temporal offset is identifiable, if the
tag is not co-located with an anchor and at least on axis of the accelerometer or all axes
of the gyroscope are exited and the tag is not co-located with the IMU. The observability
of error-state was studied by assuming three range observations to anchors, we will show
in Section 7.5.3, that two anchor positions are sufficient, if assumption on the gravity
vector are made, i.e. we assume that the gravity vector is aligned with the z-axis of the
navigation frame. Therefore, they proof that the system is locally weakly observable if
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three non-collinear anchors are available, the tag is non-coplanar with the anchors, and
all axes of the accelerometer and gyroscope are exited.

Shi et al. investigated in [134] on the anchor self-calibration in a tightly-coupled UWB-
ranging and IMU fusion algorithm in simulations with five anchors and varying ranging
noise. In the first step of this algorithm, a coarse anchor position initialization, minimizing
the residual between predicted tag positions and unknown anchor position in a least-
squares problem. In the second step, these initial guesses are used for estimating the full
state in a regular ESEKF [103] heavily limiting the scalability of the approach to more
anchors. Also, the previously mentioned approaches suffer either from poor scalability or
coarse approximations, affecting estimator consistency [10].

Therefore, we revisit the infrastructure-based UWB inertial localization and contin-
uous/online anchor self-calibration for large UWB networks using our recently proposed
MMSF-DAH approach, see Section 4.3. It is based on the IKF paradigm and has promis-
ing attributes that can be extended to render real-time tightly-coupled and scalable UWB
aided inertial navigation. From that work, we borrow the idea to treat any inter-sensor
observation in an isolated fashion, requiring only the participating sensor estimates. For
our present approach, by associating each UWB device to a single sensor instance in the
MMSF framework, measurements between any UWB device can be processed efficiently.
This step allows combining the modular inclusion of states of external sensors with a
regular MMSF with onboard sensors. Our main contributions can be summarized as:

• We propose a modular and scalable UWB-inertial based ESEKF, merging aspects
from CSE and MMSF in order to estimate an agent’s 6-DoF motion and sensor
calibration states, and simultaneously estimate in a SLAM-like fashion geometry-
states of very large UWB sensor networks in real-time.

• We perform extensive Monte Carlo simulations on synthetic and on real data from
a MAVs dataset to verify both consistency and accuracy of the proposed approach.

• We evaluate the self-calibration of simulated anchor positions using different sen-
sor configurations and against different state-of-the-art fusion strategies, showing
improved performance by incorporating meshed range measurements between sta-
tionary UWB anchors.

5.2 Problem Formulation
In the proposed sensor constellation, an IMU is used as a proprioceptive state propagation
sensor, a barometer is used for a tightly-coupled height estimation (both sensors are typi-
cally available on MAV) and a single UWB tag that performs ranging measurements with
the UWB anchors in communication range. Also, UWB anchors perform measurements
among them if in range.

We assume commercial UWB modules to work with the double-sided two-way-ranging
protocol (High Precision Ranging (HiPR)) proposed by Neuhold et al. [115] allowing fast
ranging acquisitions at a rate of 40 Hz by performing a Round-Robin scheduling to avoid
network congestion, and measurement broadcasting to close-by sensor nodes. The UWB
tag acquires/sniffs range measurement to and between nearby stationary UWB anchor
upon fly-by in communication range and fuses them locally in a probabilistic modular
filter framework, while, in contrast to other work, consistently accounting for correlations
between individual sensor estimates. For simplicity, other than Gaussian noise, we do not
assume any biases on the signals, nor extrinsic calibration between tag and IMU. We
refer to [16] on how to include these elements into an UWB-inertial estimator and how to
perform a-priori a coarse anchor position initialization.

Each sensor has a unique identifier and belongs to a known class of sensor types. Mea-
surements are processed in a ESEKF-based MMSF framework [74], which associates each
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measurement to a sensor instance that performs the information fusion with potentially
other instances of the sensor suite. Each sensor instance maintains sensor specific states,
such as calibration parameters needed for self-calibration. Further, each instance performs
a statistical NIS [10] hypothesis check to detect and reject outliers, and is capable of
processing delayed (out-of-order) measurements (see [74]).

Applying joint observations, incorporating different estimates, results in cross-covariance
terms between them and at some point, all sensor instances might be correlated.

Classical centralized filters such as [58] are typically not truly modular, as they operate
on the predefined full state as one entity (including the full joint covariance matrix) making
individual sensor filter step very costly in large networks.

We integrate our approach in three different MMSF strategies (cf. [74] for details on the
general concepts of these approaches) and compare the resulting performance: MMSF-C is
a centralized-equivalent EKF filter implementation performing all filter steps on the entire
full state vector. MMSF-DP is a centralized-equivalent EKF filter implementation, per-
forming the state propagation of individual sensor instances independently, while update
steps are performed on the full state vector. MMSF-DAH performs all filter steps isolated,
requiring only sensor instances that are directly involved (so-called participants) in the
filter update steps, while correlations to non-participants are conservatively approximated.
We show in Section 5.3 that the last strategy is best suited for our real-time UWB-inertial
aided navigation and meshed anchor self-calibration.

5.2.1 Sensor Suite
The sensor suite of the proposed AINS consists of a varying number of stationary UWB
anchors, an UWB tag, a barometer, and an IMU. Due to indirect error estimation [104],
observations have to be expressed by their error z̃ = z⊖ ẑ. This measurement error needs
to be linearized with respect to the error state at the current estimate z̃ = Hx̃ with the
measurement Jacobian H = 𝜕ℎ

𝜕x
x

𝜕x̃
⃒⃒
x̂ for the measurement function z = ℎ(x). Details on the

error-state definition, the measurement models, and Jacobians can be found in Section 2.9.
The IMU state xℐ is defined as

xℐ =
[︁

𝒢
𝒢pℐ ; 𝒢

𝒢vℐ ; 𝒢qℐ ; ℐb𝜔 ; ℐb𝑎

]︁
(5.1a)

with 𝒢
𝒢pℐ ,

𝒢
𝒢vℐ , and 𝒢qℐ as the position, velocity, and orientation of the IMU ℐ w.r.t. to the

global navigation frame 𝒢. ℐb𝜔 and ℐb𝑎 are the estimated gyroscope and accelerometer
biases to correct the related IMU readings (see Equation (2.79)). The unobservable pose
between the body frame {ℬ} and IMU {ℐ}, ℬ

ℬpℐ and ℬqℐ , are constants that need to be
known a-priori . The barometer state x𝒫 is defined as

x𝒫 =
[︁

ℬ
ℬp𝒫

]︁
(5.1b)

with ℬ
ℬp𝒫 being the position between the body reference frame and the sensor, which is

assumed to be fixed and known a-priori . To model the range measurements between two
UWB nodes, e.g., between a tag {𝒯 } and anchor {𝒜} or between anchors, {𝒜𝑖} and {𝒜𝑗},
we include the 3D position of each anchor 𝒢

𝒢p𝒜 with respect to the navigation frame {𝒢}
in the state estimation process. Therefore, the anchor state x𝒜 is

x𝒜 =
[︁

𝒢
𝒢p𝒜

]︁
(5.1c)

and the tag state x𝒯 is
x𝒯 =

[︁
ℬ
ℬp𝒯

]︁
(5.1d)
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Figure 5.2: Shows the block diagram of the simulation framework. Image adapted from [75].

with ℬ
ℬp𝒯 being the transformation between the body reference frame ℬ and the UWB

tag, which is assumed to be constant and not included in the estimation.
Summarized and as depict in Figure 5.1, our modular ESEKF formulation is based

on the IMU navigation states and their dynamics in Equation (2.84). The filter obtains
corrections from the barometer (Equation (2.111) and Equation (2.110)), the measure-
ments between UWB tag and anchors in range (Section 2.9.6) as well as the inter-anchor
measurements observed from anchors in range (Section 2.9.6). The inclusion of the inter-
anchor measurements as an extension to our CSE inspired MMSF framework ([74]) is
key to enable consistent and scalable inclusion of the UWB mesh geometry in the es-
timation process in real-time. This renders our approach a real-time capable consistent
UWB-inertial SLAM-like estimator.

5.3 Evaluation
The experiments are done in our MATLAB framework, that allows to load real data
from the EuRoC [20] dataset or to generate smooth trajectories and noisy, biased IMU
samples. Exteroceptive measurements are generated based on the ground truth trajectory
and are modified by the sensors’ calibration states and noise parameters. Furthermore,
a delay and dropout rate can be applied to these measurements. The noisy and biased
real-world IMU samples provided by the datasets are used without modifications. Finally,
in multiple Monte Carlo simulation runs, all measurements are processed in an instance
handler as depict in Figure 5.2. It maintains multiple sensor instances and communication
between them is handled locally. The estimates and ground truth values from the dataset
are used for deterministic and reproducible evaluation of the estimator credibility, which
is described in the following section.

The simulated UWB range measurements are modeled based on the HiPR proto-
col [115], with a ranging standard deviation of 0.1 m. Further, we assume to have coarse
initial beliefs about each anchor’s locations, e.g., by performing a calibration procedure
described by Blueml et al. [16] or manual measurements.

The evaluations are performed single-threaded in MATLAB on an AMD Ryzen 7 3700X
CPU with a 32 GB DDR4 RAM.
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Figure 5.3: Scenario S1: Shows the estimated trajectory at 𝑡 = 17 s, the 15 estimated and 5
fixed anchor positions, randomly placed on a sphere with a radius of 7 m, and the estimate
IMU pose with the exteroceptive sensor positions of the barometer and the fixed UWB tag.
The problem is described in Section 5.3.1. Image reused from [75].

5.3.1 Scenario S1

In the first scenario, S1, we study the tightly-coupled anchor self-calibration in our modular
aided inertial estimation framework. Therefore, 20 anchors are randomly distributed on a
sphere with a radius of 7 m. Five anchor positions are assumed to be known and set to
be fixed in the estimation framework, meaning that the corresponding sensor instances
are excluded from sensor fusion. According to a nonlinear observability analysis, only
two anchors need be known, in order to render the nonlinear estimation problem fully
observable. Since the system suffers from approximated models, linearization errors, multi-
rate measurements, and a low signal-to-noise ratios, we found five fixed anchors to render
a good compromise in terms of convergence behavior.

The agent moves along a smooth and randomly generated trajectory within the sphere
for a duration of 𝐷 = 150 s as shown in Figure 5.3. All states are initialized with a
randomly assigned ±1𝜎 offset from the true value, as described in Table 5.1. The IMU
sample rate is 100 Hz and all UWB ranging devices are in communication range (leading
to maximum complexity), while 10 % of measurements are randomly dropped. In total,
three experiments regarding the anchor self-calibration are conducted. The first studies
the anchor self-calibration by just obtaining tag to anchor (T-A) range measurements. In
the second experiment, additionally range measurements between anchors (A-A) are used.
In the third experiment, tag to anchor and readings from the barometer are used. Three
different modular multi-sensor fusion strategies, MMSF-C, MMSF-DP, and MMSF-DAH
are applied as already described in Section 5.2.



5. Filter-based Modular Ultra-Wideband Aided Inertial Navigation 123

𝒢
𝒢p𝒜

ℬ
ℬp{𝒯 ,𝒫}

𝒢
𝒢{p,v}ℐ

𝒢qℐ ℐb𝑎 ℐb𝜔

𝜎0 30 cm 10 cm 1 {m,m/s} 5 deg 0.05 m/s2 0.05 rad/s

Δx0 ±30 cm ±10 cm ±1 {m,m/s} ±5 deg ±0.05 m/s2 ±0.05 rad/s

Table 5.1: Scenario S1: Initial uncertainty and initial state offsets Δx0 for the UWB anchor
positions, IMU states, and exteroceptive sensor states. ± emphasis that a positive or negative
values is assigned randomly per element. Table is reused from [75].
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Figure 5.4: Scenario S1: T-A ranging. Shows the ANEES, the double-sided 95 % confidence
region (dotted lines), and expected ANEES value (dashed line) over 10 Monte Carlo sim-
ulation runs of the accelerometer bias b𝑎, the IMU orientation, and the 6th UWB anchor
position using MMSF-C (blue), MMSF-DP(green), and MMSF-DAH (cyan). The experi-
ment is described in Section 5.3.1. Image is reused from [75].
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Figure 5.5: Scenario S1: T-A and A-A ranging. Shows the ANEES, the double-sided 95 %
confidence region (dotted lines), and expected ANEES value (dashed line) over 10 Monte
Carlo simulation runs of the accelerometer bias b𝑎, the 17th and 19th UWB anchor posi-
tion using MMSF-DP (blue) and MMSF-DAH (green). The experiment is described in Sec-
tion 5.3.1. Image reused from [75].
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Figure 5.6: Scenario S1: T-A and A-A ranging estimation results of the first Monte Carlo
run using MMSF-DAH. The top row shows the true (dashed) and estimated values (solid),
the second row the single run NEES with the double-sided 99.7 % confidence region (dotted
lines), and the third row show the estimation error and the 3𝜎 boundaries. The four quad-
rants are the estimated IMU position, velocity, orientation, and the estimated position of
the 19th UWB anchor. In yellow, blue, red are for the x, y, z position, or the roll, pitch, yaw
angle, respectively. The experiment is described in Section 5.3.1. Image adapted from [75].
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Figure 5.7: Scenario S1: T-A ranging and pressure readings. Shows the ANEES, the double-
sided 95 % confidence region (dotted lines), and expected ANEES value (dashed line) over
10 Monte Carlo simulation runs of the accelerometer bias b𝑎, the 7th and 18th UWB anchor
position using MMSF-DP (blue) and MMSF-DAH (green). The experiment is described
in Section 5.3.1. Image reused from [75].
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T-A ranging

In this experiment, IMU and T-A measurements are fused in the modular estimator frame-
work using three different fusion strategies. The effective T-A measurement rate for each
anchor is 2 Hz due to the Round Robin scheduling performed. As shown in Table 5.2,
MMSF-DAH is the fastest approach that allows to significantly reduce the total filter
execution time by a factor of 22.3 and a factor of 15.6 over MMSF-C and MMSF-DP, re-
spectively. MMSF-DAH seems to be slightly more confident than the other two approaches
and the ANEES converges slower to the desired mean value. Nonetheless, the ANEES plots
of the weakly observable accelerometer bias b𝑎, the IMU orientation 𝒢qℐ , and the position
of the sixth (as a representative and also random choice for space reasons) anchor 𝒢p𝒜6

for
all strategies shown in Figure 5.4, behave similarly. Summarized, the ARMSE of anchor
positions reduced from an initial RMSE of 30 cm (see Table 5.1) below to approximately
12 cm on average over the entire trajectory using either fusion strategy in Table 5.2.

T-A and A-A ranging

In this experiment, IMU, T-A and A-A range measurements were fused using MMSF-DP
and MMSF-DAH. MMSF-C was excluded due to the huge single run computation time.
The effective T-A and A-A measurement rate for each device is 1 Hz due to the time
scheduling performed to avoid network congestion. As shown in Table 5.2, MMSF-DAH is
21.8 times faster then MMSF-DP. It can be clearly seen in the same table, that A-A range
measurements significantly reduce the estimation error of the anchor positions down to
1.6 cm. The inclusion of these measurements comes at the cost of higher complexity, leading
to 5.6 times higher computation time in the case of MMSF-DAH. This could motivate to
perform a two-stage approach: first, performing an accurate anchor localization, then once
the system is calibrated, only highly efficient T-A measurements are performed.

In Figure 5.5, the ANEES of the accelerometer bias, the 17th anchor position 𝒜17
and the 19th anchor position 𝒜19 is shown. Interestingly, the A-A measurements have a
positive impact on the ANEES of the accelerometer bias, and it also seems to converge
faster, compared to the T-A-only experiment. The ANEES of the 17th and 19th anchor are
chosen as they show both under-confidence and over-confidence, which is independent of
the selected fusion strategy. Apart from a position/constellation related dependency issue
due to PDOP, the major impact stems form lacking observability in areas with no direct
link to fixed anchors. Nonetheless, the state plots in Figure 5.6 of the first Monte Carlo
simulation run using MMSF-DAH, show an exemplary and satisfying estimation behavior
of the navigation states, while the estimated anchor position 𝒜19 is not converging, as it
is not globally observable as discussed later in Section 7.5.4.

T-A and pressure

In this experiment, we evaluate the impact of fusing pressure readings of a rigidly at-
tached barometer loosely coupled in the modular estimation framework using MMSF-DP
and MMSF-DAH. The calibration state between the barometer and the body reference
frame are assumed to be known a-priori and are fixed. Pressure readings are processed
at a rate of 20 Hz with measurement standard deviation of 𝜎𝒫 = 1 Pa, translating to ap-
proximately 8.4 cm standard deviation at sea-level and is slightly beyond commercially
integrated pressure sensors. Again, 10 % of pressure readings are dropped randomly. As
shown in Table 5.2, MMSF-DAH is again 21.8 times faster as MMSF-DP. Fusing pressure
reading tightly leads to more accurate IMU estimate in case of MMSF-DP than fusing
A-A measurements. Interestingly, the pressure readings are not improving the anchor po-
sition estimates across approaches and is subject to future investigations. In Figure 5.5, the
ANEES of the accelerometer bias, the 7th and 18th UWB anchor are depicted, indicating
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10 Monte Carlo runs [𝑐𝑚] [𝑐𝑚/𝑠] [𝑑𝑒𝑔] [𝑚/𝑠2] [𝑟𝑎𝑑/𝑠] [𝑐𝑚]

MMSF EuRoC 𝒢
𝒢p̄ℐ

𝒢
𝒢v̄𝒢

𝒢q̄ℐ ℐb̄𝑎 ℐb̄𝜔
𝒢
𝒢p̄𝒜

AR AN AR AN AR AN AR AN AR AN AR AN

DP MH_04 9.82 3.28 9.6 3.97 1.52 2.96 0.03 2.91 0.003 2.1 5.9 4.77

DAH MH_04 10.7 3.81 9.8 3.92 1.58 2.87 0.03 2.72 0.003 2 6.6 4.7

DP MH_05 10.8 3.86 9.3 4.63 1.72 3.38 0.029 2.2 0.0028 2.62 5.65 5.78

DAH MH_05 12.56 4.3 9.77 4.87 1.73 3.77 0.03 3.37 0.0029 4.43 6.55 5.66

Table 5.3: Scenario S2: Shows the average ARMSE (AR) and ANEES (AN) of the estimated
states as well as the average over the estimates UWB anchor positions for different fusion
strategies and different sensor configurations averaged over 10 Monte Carlo simulation runs.
Best values in bold and problem is described in Section 5.3.2. Table is reused from [75].

again that MMSF-DAH is more optimistic than MMSF-DP and that the ANEES converges
slower, while all estimates tend to converge towards the defined confidence region.

5.3.2 Scenario S2

For evaluating the estimator’s credibility and the computation time of individual sensor
instances in a realistic scenario, we use two Machine Hall sequences (MH_04 and MH_05)
of the EuRoC dataset [20]. The simulation runs for 78 s and 92 s, which is the flight time
of the Machine Hall sequences between take-off and landing. Each MAV is equipped with
an IMU, barometer, and an UWB transceiver (tag), for both communication and pair-
wise ranging between other UWB modules in communication range. Figure 5.1 depicts the
spatial frame constellation. Twenty-five stationary UWB transceiver (anchors) are assumed
to be deployed to cover the area of interest as shown in Figure 5.8 with a communication
range of 4 m. The communication range is on purpose short, to justify the deployment of 25
anchors and to challenge the estimation problem: anchors are revisited again, meaning that
they are correlated and need to be considered properly, and some anchors have no direct
link to (fixed) reference anchors. Five anchors close to the take-off position of the MAV
are fixed (constant) to define the global coordinate reference frame.

The same initial values and parameters as in Section 5.3.1 are used, with the differ-
ence that the initial uncertainty of the anchor position was lowered to 𝜎𝒢p𝒜

= 0.1 m
and the effective UWB ranging rate between devices in range is 8 Hz (due to the sparse
configuration, fewer devices are in communication range, which allows a higher net rate
for individuals) and the IMU rate in the dataset is 200 Hz. All UWB nodes are inserted
artificially into the real-world dataset.

Figure 5.8 shows the estimation performance using MMSF-DP and MMSF-DAH. As
confirmed in Table 5.3, hardly any difference in the estimated IMU states are noticeable,
while operating on the full state vector (with 75 elements) in case of MMSF-DP in the
filter update steps causes tremendous computation efforts over treating them isolated in
case of MMSF-DAH. This processing speedup of almost 26.5 comes at the cost of a slightly
degraded and slower converging anchor self-calibration, as discussed in Section 5.3.1.
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Figure 5.8: Scenario S2: Top view on the anchor placement (black bullets) and the Machine
Hall 4 and 5 trajectories of the Machine Hall sequences of the EuRoC dataset [20] in dashed
dark red and dashed dark blue, respectively. In red and blue are the estimated position using
MMSF-DAH, while in mageneta and cyan using MMSF-DP. The filled orange circles show
the communication range of 4 m per UWB anchor. Fixed anchors at the starting position
are assumed to be constant and known, to define the navigation reference frame. Image is
reused from [75]

5.4 Conclusion
Considering inter-sensor observations not involving the core navigation states in a MMSF
framework is a new paradigm originating from CSE. In our evaluations, we have shown that
considering these as tightly-coupled range observations between UWB anchors can signifi-
cantly improve the estimates of both, the navigation states and estimated anchor positions.
In such formulations, the computational effort increases significantly using centralized-
equivalent estimators. With the presented sensor extensions to our recently proposed
MMSF-DAH approach (see Chapter 4), which builds upon the IKF paradigm (see Chap-
ter 6), we show the feasibility of processing inter-sensor observation as isolated joint up-
dates between sensor instances without requiring estimates of other sensors and, thus, re-
sulting in a significant speedup. This breaks the computational barrier such that meshed
(and generally ill scaling) inter-sensor observations can be fused to aided inertial navigation
estimators, while maintaining consistency in the navigation states.

UWB-aided inertial motion estimation with simultaneous online UWB anchor position
initialization (and extension by fly-by), and continuous self-calibration remains a challeng-
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10 Monte Carlo runs [𝑠] [𝑠] [𝑠]

MMSF EuRoC 𝑡𝑝𝑟𝑜𝑝 𝑡𝑗𝑜𝑖𝑛𝑡 𝑡𝑡𝑜𝑡

DP MH_04 0.0071 0.209 2337.8

DAH MH_04 0.0036 0.0029 88.7

DP MH_05 0.0072 0.204 3087.9

DAH MH_05 0.0038 0.0032 116.6

Table 5.4: Scenario S2: Shows the average execution times for different fusion strategies
and different sensor configurations averaged over 10 Monte Carlo simulation runs. Please
note the total execution time 𝑡𝑡𝑜𝑡 is the average over a single run, while 𝑡𝑝𝑟𝑜𝑝 and 𝑡𝑗𝑜𝑖𝑛𝑡 are
the average values for a single filter propagation or update step. Best values in bold and
problem is described in Section 5.3.2. Table is reused from [75].

ing task. An interesting addition would be an ad hoc UWB anchor position initialization
during a fly-by with continuous self-calibration, once an UWB tag detects and obtains
measurements from a new unknown anchor. In future work, we will also investigate in
increasing the robustness in case of NLOS conditions (that lead to unmodeled offsets in
range measurements), which requires consistent estimates for a statistical outlier rejection.



Chapter 6

The Isolated Kalman Filtering Paradigm

Our recent publications on DCSE [76] and on Modular Multi-Sensor Fusion (MMSF) [74],
covered in Chapter 3 and Chapter 4, respectively, allow us to generalize these filter for-
mulations and to propose a new Kalman filter decoupling paradigm, denoted as Isolated
Kalman Filtering (IKF). This paradigm builds upon approximations introduced by Luft
et al. in [94, 95].We formally discuss the paradigm on a generic estimation problem, we in-
troduce a novel buffering scheme that allows processing delayed measurements, and prove
that the approximation made, in order to achieve isolated joint update steps, is based
on an implicit maximum determinant (and thus maximum entropy) completion of the
incomplete full state covariance matrix. We provide a source code of a generic estimation
framework called ikf_lib, that implements the IKF paradigm and supports out-of-sequence
measurements. The steady-state behavior in eleven different observation graphs was stud-
ied and compared against an optimal and naive approach, followed by a filter credibility
analysis. This paradigm and the gained insights are of particular interest for the robotics
community, since DCSE-DACC [95] became almost a standard for distributed multi-robot
filter-based cooperative localization. For instance, De Carli et al. used it in [30] as estima-
tion approach for their perception aware path planing algorithm for multi-robot systems.

6.1 Introduction
This paradigm allows to decouple various estimated states of a single filter into multiple
sub-states that are estimated in decoupled sub-filters in a suboptimal, but credible fashion.
The decoupling is achieved in a sense that each sub-filter can perform certain steps inde-
pendently – i.e. isolated – from other filters, while at the same time correlations between
the sub-filters are encountered/considered and corrected approximately. Thus, it builds
upon the fundamental assumption that dynamics of individual nodes are decoupled and
exploits a spare output coupling between nodes, which was already covered thoroughly
with respect to CSE in Section 3.2. Observations relating to multiple filters only require
the presence or temporal availability of those during the process of performing the joint
update, thus again, in an isolated fashion. The computation time of individual isolated
filter steps is theoretically invariant to the total number of decoupled sub-filters in the
system. Additionally, sub-filters can perform private observations isolated, in case the in-
ternal state is directly or partially observable by a measurement. These isolated updates
might lead to suboptimal estimates with respect to the exact filter formulation, similar to
the Schmidt-Kalman Filter (SKF), while at the same time, it reduces the computational
complexity, as only sub-filters, that are coupled through the observation, are needed.

With this paradigm, originating from DCSE-DAH, we want to rethink the classical
monolithic filter formulation based on a global full state space and treat the estimation
problem rather as a set of filter nodes in an abstract/virtual network with communication
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and processing capabilities, where each node is estimating its subspace of the global full
state1. The granularity, in which the global full state is divided, depends on problem at
hand, the required modularity, e.g., if it desired to add or remove single nodes frequently,
and if the dynamics of the states are decoupled2.

Figure 6.1: A centralized and distributed realization of fusing information provided by four
sensors. In a centralized realization, a single filter instance is operation on a full state, while
in a distributed realization, the full state is split up into reasonable subspaces, which are
maintained in individual filter instances. In order to process measurements exactly, commu-
nication and information exchange between the instances is required. In fact and as shown
in [74], various DCSE strategies can be applied to decouple these individual filter instances.
The proposed IKF is built upon approximations, that reduces both, the computation and
communication effort and allows to decouple states, in the sense that observation can be
performed isolated among participants.

Figure 6.1 illustrates the difference of a centralized/monolithic and decoupled filter
formulation. Another example can be made by revisiting the sensor constellation proposed
by Hausmann et al. in [58], that consists of a single IMU as state propagation sensor, a
camera, a GPS sensor, and a range sensor measuring distances to three stationary anchors.
Splitting the estimation problem up into individual nodes would result in one node for the
IMU, the camera, the GPS sensor, and one for each estimated anchor position. Isolated
joint updates would be performed between the IMU and each individual exteroceptive
sensor. This abstraction made, embodies inherently modularity by design and allowed us
to propose a MMSF algorithm in Chapter 4 and a unified distributed EKF algorithm
for both MMSF and CSE in Chapter 7, which typically has been addressed in literature
separately.

While processing delayed measurement in a centralized formulation is rather trivial,
as discussed in Section 2.9.8, it imposed challenges in a decoupled or distributed system
as operations need to be reapplied among correlated estimators.

More precisely, our contributions can be summarized as:
• Formulating the Isolated Kalman Filtering paradigm as a general method to decouple

Kalman filters by approximating and distributing relevant cross-covariance terms
even of currently non-involved filters,

• introducing a buffering scheme that allows to process delayed measurements, and
• performing an extensive Monte Carlo simulation on a linear estimation problem,

including a credibility analysis.
1Going even a step further, one could process tasks in parallel (e.g., multi-threaded), if, e.g., individ-

ual nodes would be spawn as threads of a single process. A considerable downside is the overhead and
complexity for scheduling and task synchronization.

2This is often the case for calibration states which are modeled to have zero dynamics.
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The rest of the chapter is structured as follows: in Section 6.2 we describe the estimation
problem as a set communicating estimators with processing capabilities, while Section 6.3
presents the IKF paradigm on a generic node. In Section 6.4, we evaluate the paradigm on
a linear estimation problem in a Monte Carlo simulation and our findings are concluded
in Section 6.5.

6.2 Problem Formulation
The problem formulation for IKF is the counterpart to the one for filter-based CSE in Sec-
tion 3.2, where we described the estimation problem on a swarm of communicating agents,
with the difference that individual agents become now local nodes of an abstract network.
While we stressed in Section 3.2, that it is important to regard/treat the individual esti-
mates of agents in a swarm as part of a global full state, we want to stress with the IKF
paradigm, that parts of global full state can be treated as individual nodes of an abstract
(locally communicating) network, in order to exploit the sparsity of the input and output
coupling, as shown in Figure 6.2.

Therefore, we start with the dynamics of a stochastic process, that consists of three
groups of states that are dynamically not linked/coupled with each other, meaning that
the off-diagonal blocks of the state transition and process noise matrix are zero. Each
subgroup is associated to a node of the abstract network. Therefore, the matrices Φ =
Diag ([Φ11; . . . ; Φ𝑁𝑁 ]), Q = Diag ([Q11; . . . ; Q𝑁𝑁 ]), and B = [B11; . . . ; B𝑁𝑁 ] are ob-
tained from the individual nodes’ dynamics. The measurement sensitivity matrix H =
Diag ([H11, . . . ,H𝑁𝑁 ]) is built from the individual nodes’ matrices. Typically, it has a
sparse structure, as it is not always possible to relate the measured quantity to all in-
ternal states, meaning that parts of the full state space remains hidden or unobserved
(see Section 2.9.7).

The dynamics of a system with 𝑁 nodes, S := {S𝑖|𝑖 = 1, . . . , 𝑁}, can be represented,
e.g., in the form

x𝑘 = Φ𝑘|𝑘−1x𝑘−1 + Γ𝑘−1u𝑘−1 + G𝑘−1w𝑘−1, (6.1a)

z𝑘 = H𝑘x𝑘 + v𝑘, (6.1b)

where z𝑘 =
[︁
z𝑘

1; . . . , z𝑘
𝑁

]︁
is the concatenation of measurements available at each agent

at 𝑡𝑘, x𝑘 =
[︁
x𝑘

1 ; . . . ,x𝑘
𝑁

]︁
is the stacked state, u𝑘 =

[︁
u𝑘

1 ; . . . ,u𝑘
𝑁

]︁
the stacked control

input, w𝑘 =
[︁
w𝑘

1; . . . ,w𝑘
𝑁

]︁
and v𝑘 =

[︁
v𝑘

1; . . . ,v𝑘
𝑁

]︁
are the concatenated zero-mean white

Gaussian process and observation noise, respectively.
While the physical process of an individual node S𝑖 is represented as linear stochastic

system in the form

x𝑘
𝑖 = Φ𝑘|𝑘−1

𝑖𝑖 x𝑘−1
𝑖 + Γ𝑘−1

𝑖𝑖 u𝑘−1
𝑖 + G𝑘−1

𝑖𝑖 w𝑘−1
𝑖 , (6.1c)

z𝑘
𝑖 = H𝑘

𝑖𝑖x
𝑘
𝑖 + v𝑘

𝑖𝑖, (6.1d)

z𝑘
𝑖,𝑗 = H𝑘

𝑖,𝑗

⎡⎣x𝑘
𝑖

x𝑘
𝑗

⎤⎦+ v𝑘
𝑖,𝑗 , (6.1e)

where x𝑖 is the state vector, u the (control) input, and z𝑖 and z𝑖,𝑗 are output vectors. Φ𝑖𝑖,
Γ𝑖𝑖, and G𝑖𝑖 are the state transition, input coupling, and process noise coupling matrices,
respectively. H𝑖𝑖 and H𝑖,𝑗 are the measurement sensitivity matrices for the private and
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joint observations, respectively. Note that joint observations are not limited to a pair-
wise coupling. w𝑖 ∼ 𝒩 (0,Q𝑖𝑖), and v{𝑖𝑖,𝑖,𝑗} ∼ 𝒩

(︀
0,R{𝑖𝑖,𝑖,𝑗}

)︀
are the known process and

observation noise, that are assumed to be zero-mean white Gaussian with an associated
covariance Q𝑖𝑖 and R{𝑖𝑖,𝑖𝑗}, respectively.

A set of nodes S that is (temporarily) coupled in their outputs are so-called participants
P and defined as

P := {P𝑖 ∈ S|1, . . . , 𝑃}, (6.1f)

while the set of non-participants is defined as

P̄ := S ∖ P. (6.1g)

Like in Section 3.2.1, this abstract network can be modeled as a graph 𝒢(S, ℰ), where
S = {1, . . . , 𝑁} is the vertex set of nodes and the edge set ℰ ⊆ 𝒱×𝒱, where the presence of
an edge 𝑒𝑘

𝑜 = (𝑖, 𝑗) represents the possibility for an output coupling between nodes 𝑖 and 𝑗
at the time step 𝑡(𝑘). A bundle/set of edges represent an output coupling (measurement)
that relates to multiple nodes. For the IKF, the communication graph is a bi-directed star
graph rooted at the interim master node, containing all vertices of the observations. Both,
the vertex and edge set are time-varying, e.g., by adding or removing a new IKF or in case
of sensor depletion.

6.2.1 Summary
The IKF paradigm could be seen as alternative to Schmidt-states/nuisance parameters
(see Section 2.8.3), whose beliefs remain unchanged, but the uncertainty of the nuisance
parameters and the correlation with the essential parameters are considered in the update
step. In the same sense, IKF states can be used to represent nuisance parameter, but
they obtain correction via joint observations, meaning the mean and covariance of isolated
parameters are changing.

6.3 Isolated Kalman Filtering for a generic (sensor) node

IKF is based on three concepts, (i) the isolated state propagation introduced by Roume-
liotis and Bekey in [121] and (ii) the isolated state correction based on seminal work of
Schmidt [129] and Luft et al. [95], and (iii) the correction buffering scheme that was
introduced in our previous DCSE-DAH approach [76] (see Section 3.3) and refined in
our MMSF-DAH approach [74] (see Section 4.3) to support delayed (out of sequence)
measurements.

The support of delayed measurements requires a more sophisticated buffering scheme,
as shown in Figure 6.3 and is described in following section. In the sections Section 6.3.2
and Section 6.3.3, we elaborate on the proposed correction terms inspired by [76].In Sec-
tion 6.3.4, we handle asynchronously received measurements, which is in particular relevant
for practical applications, since the assumption made in Section 3.3.5 can degrade the es-
timation performance when, e.g., agents perform aggressive motions. Although parts were
already described in Section 3.3, we decided to repeat those instead of referencing them,
to support readability and to provide a self-contained chapter.

6.3.1 Buffering Scheme
Figure 6.3 shows the block diagram of the IKF for a node S𝑖, consisting of four buffers;
ℬS𝑖

:= Hist{𝑡𝑘, {Φ,ϒ,Λ}𝑘} for the correction terms, 𝒳 S𝑖
:= Hist{𝑡𝑘,X𝑘

𝑖 } for the beliefs,
𝒞S𝑖

:= Dict{id𝑗 ,Hist{𝒮𝑖,𝑗}} for the factorized cross-covariances, and 𝒵S𝑖
:= Hist{𝑡𝑘,M𝑘}
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(a) Shows the components for a Kalman filter realization on a discrete time plant defined as x𝑘 = Φ𝑘|𝑘−1x+
Γ𝑘−1u𝑘−1 + G𝑘−1w and z𝑘 = H𝑘x𝑘 + v, see Equation (3.3). The block matrices in the dynamics (Φ, Q,
Γ, and G = I) and output (H and R) are sparse. The orange arrow indicate control inputs that cause
state propagation, while the red and blue arrow indicate private and joint updates, respectively.

(b) Shows the components of an isolated Kalman filter realization of Figure 6.2a. By exploiting the sparsity
in the input dynamics of the plant, two IKF instances can be used to address the estimation problem. Each
IKF instance needs to maintain, in addition the factorized cross-covariance 𝒮, a correction buffer ℬ. The
matrices to describe the isolated parts of the plant are smaller. Each instance can process its control input
and private measurements independently (isolated from the rest). A coupling between the IKF instances
happens at the moment a joint measurement z𝑖,𝑗 is obtained, and requires information from both instances.
Please note that the estimates x̂𝑖 and x̂𝑗 are suboptimal, thus not exact.

Figure 6.2: Comparison between a full state Kalman filter formulation and correspond-
ing, decoupled formulation based on two isolated Kalman filter instances. Please note that
delayed (out-of-sequence) measurements are not supported in these realizations.

for the processed measurements. The definitions for a dictionary Dict and sliding time
horizon buffer Hist can be found in Section 2.2.

𝒞S stores a history of factorized cross-covariances in dictionary. According to [121], the
cross-covariance between the estimators/nodes S𝑖 and S𝑗 at time 𝑘 can be factorized

Σ𝑘
𝑖𝑗 = 𝒮𝑘

𝑖𝑗

(︁
𝒮𝑘

𝑗𝑖

)︁T
, (6.2)

where the choice of decomposition is arbitrary, e.g., 𝒮𝑘
𝑖𝑗 = Σ𝑘

𝑖𝑗 and 𝒮𝑘
𝑗𝑖 = I.

The cross-covariance factors 𝒮𝑘
𝑖𝑗 are stored in a dictionary 𝒞S𝑖

:= {Hist𝑗 |𝑗, . . . , 𝑁} of
sliding time horizon buffers Hist denoted as 𝒞S𝑖

which are accessed via another node’s
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Figure 6.3: Block diagram of the IKF, which shows the accumulated elements (e.g.,
M2

𝑖𝑖 = ϒ2
𝑖𝑖Φ

2|1
𝑖𝑖 = ℬS𝑖

(𝑡2)) in the correction buffer ℬS𝑖
of node S𝑖. Φ for propagation

steps, ϒ for private, and Λ for joint observations (see Sections 6.3.2 and 6.3.3). At 𝑡 = 6,
the correlated estimators S{𝑖,𝑗} perform again a joint observation. To account for meanwhile
propagation and update steps, each estimator has to apply these corrections on the factors
𝒮1(+)

{𝑖𝑗,𝑗𝑖} stemming from their last encounter before using them in the current joint obser-
vations. By accumulating corrections M6|2

{𝑖𝑖,𝑗𝑗} =
∏︀6

𝑙=2 ℬS{𝑖,𝑗}
(𝑡𝑙) (held in green), factors

can be forward propagated (green arrow and in Equation (6.8)) 𝒮6(−)
{𝑖𝑗,𝑗𝑖} = M6|2

{𝑖𝑖,𝑗𝑗}𝒮
1(+)
{𝑖𝑗,𝑗𝑖}

(see Equation (6.9)). After the joint update, a new factor is inserted into the correlation
dictionary of the participating nodes, e.g., P := {S𝑖, S𝑗} by 𝒞{S𝑖,S𝑗},6({idS𝑗

, idS𝑖
}) = 𝒮6(+)

{𝑖𝑗,𝑗𝑖}
(red arrow). A history of beliefs is maintained in 𝒳 S𝑖

and a history of measurements in 𝒵S𝑖
.

unique ID idS𝑗
and a timestamp 𝑡𝑘 in the form

𝒞S𝑖
(idS𝑗

, 𝑡𝑘) = {𝒮𝑘
𝑖𝑗}. (6.3)

We propose that each node S𝑖 keeps a sliding time horizon buffer Hist for the latest
beliefs denoted as 𝒳 S𝑖

which is accessed via a timestamp 𝑡𝑘 in the form

𝒳 S𝑖
(𝑡𝑘) = {x𝑘

𝑖 }. (6.4)

Similarly, a sliding time horizon buffer 𝒵S𝑖
for the latest measurements to support

redoing of measurement in their proper sequence (as discussion in Section 2.9.8), which is
accessed via a timestamp 𝑡𝑘 in the form

𝒵S𝑖
(𝑡𝑘) = {M𝑘}. (6.5)

Please note that, in case of joint observations, only one participant, e.g., the interim
master, adds the measurement to the buffer. The measurement data

M := {𝑡𝑘,Type, idS𝑖
, z𝑘,R𝑘} (6.6)

contains beside the measurement vector and measurement noise, a timestamp of the event,
the sensor id, and a meta information about the measurement type in Type.

ℬS is buffering a history of correction terms which is accessed via a timestamp 𝑡𝑘 in
the form

ℬS𝑖
(𝑡𝑘) = {x𝑘

𝑖 }. (6.7)
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Figure 6.4: Sensor activity and buffering: Given three sensors nodes, Sensor1 (S1), Sensor2
(S2) and an IMU (I) for state propagation. S1 and S2 are due to previous joint updates
correlated with I. S2 has a low and time-varying rate. At 𝑡𝑐𝑢𝑟𝑟 the IMU’s time horizon
is still reaching to the last joint update with S2. In order not to discard the last known
cross-covariance factor 𝒮IS2

relating to S2, the IMU has to propagate that factor forward in
time using elements from correction buffer ℬ (depicted by a black arrow). Image adapted
from [74].

According to [76], we are able to restore an approximated a priori cross-covariance Σ𝑚
𝑖𝑗

between sensors at the moment they perform a joint observation at 𝑡𝑘 by applying their
correction buffer’s ℬ{S𝑖,S𝑗} accumulated histories M𝑘|𝑚

{𝑖𝑖,𝑗𝑗}

M𝑘|𝑚
{𝑖𝑖,𝑗𝑗} =

∏︁
𝑘
𝑙=𝑚ℬ{S𝑖,S𝑗}(𝑡𝑙), (6.8)

onto their individual factors 𝒮𝑚
{𝑖𝑗,𝑗𝑖} from their latest encounter at 𝑡𝑚

Σ𝑘(−)
𝑖𝑗 =

(︁
M𝑘|𝑚

𝑖𝑖 𝒮
𝑚
𝑖𝑗

)︁(︁
M𝑘|𝑚

𝑗𝑗 𝒮
𝑚
𝑗𝑖

)︁T
. (6.9)

Time horizon

Note that the time horizon of the nodes’ buffers (𝒞S𝑖
, 𝒳 S𝑖

, 𝒵S𝑖
, and ℬS𝑖

) have an impact
(i) on the memory footprint, (ii) the maximum allowed sensor delay, and (iii) on the
frequency the cross-covariance factors have to be forward propagated.

To reduce the memory footprint, it is desirable to have a fixed time horizon for the
buffers. As shown in Figure 6.4, this leads to the challenge that required correction terms
within the correction buffer ℬ can fall out of the past time horizon, before the cross-
covariance factors have being used. Consequently those cannot be restored, when they
would be needed the next time.

Therefore, the time horizons for each cross-covariance buffer Hist within 𝒞S have to be
checked periodically, e.g., in the propagation steps, in order avoid information loss in the
correction buffer by forward-propagating cross-covariance factors (Algorithm 4.5).

This is achieved by finding cross-covariance factors 𝒮 that are associated to the last
element in the correction buffer ℬ. The oldest element in the ℬ by

𝑡𝑜 = min(ℬ < 𝑡𝑘) (6.10)
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then we compute a time span for forward propagation, e.g., the half of the correction
buffers current horizon,

𝑡𝑚 = 𝑡𝑜 + (max(ℬ)− 𝑡𝑜)/2. (6.11)

We need to compute a correction factor M𝑚|𝑜 based on the correction buffers ℬ elements
using Equation (6.8).

Now we need to iterate through all Hist of the factorized cross-covariance dictionary 𝒞
and find factorized cross-covariances 𝒮 that need to be forward propagated by

{𝒮𝑜(−)
𝑖,𝑗 } = find(𝒞(idS𝑗

) ≡ 𝑡𝑜), idS𝑗
∈ 𝒞 (6.12)

and apply the correction factor on all of them, leading to new elements

𝒞(idS𝑗
, 𝑡𝑚) = M𝑚|𝑜{𝒮𝑜(−)

𝑖,𝑗 }, idS𝑗
∈ {𝒮𝑜(−)

𝑖,𝑗 }. (6.13)

This ensures that the time horizon of the correction buffer ℬ is always sufficient. While
the correction buffer reduces the maintenance effort during the propagation and private
updates steps – if many correlations exist – compared to [95, 121].

Remark 8 The length of that horizon has an impact on when and where that propagation
happens and how much sensor measurements can be delayed. In the limit of infinitely
long time horizons, it always happens in joint updates (when it is actually required). The
maximum supported sensor delay is half of the history buffers time horizon, which results
from the worst case, when an element was forcibly forward propagated by the half horizon
(see Equation (6.11)), in Equation (6.13). If the size of the correction buffer |ℬS| ≤ 1,
then the corrections are always directly applied on all factorized cross-covariances held in
𝒞S

6.3.2 Isolated State Propagation

The isolated state propagation of a node between the time instance 𝑡𝑚 to 𝑡𝑘, is assumed
to be corrupted by Gaussian noise. Assuming decoupled inputs, each node independently
propagates its belief. The state covariance matrix on S𝑖 is propagated using

Σ𝑘
𝑖𝑖 = Φ𝑘|𝑚

𝑖𝑖 Σ𝑚
𝑖𝑖 Φ𝑘|𝑚

𝑖𝑖

T
+ Q𝑘|𝑚

𝑖𝑖 , (6.14)

with Φ𝑘|𝑚 as the discretized state transition matrix and Q𝑘|𝑚 the discretized process noise
covariance.

As the node (participant) S𝑝 is most likely correlated to other (non-participating)
nodes S𝑜 ⊆ S, these cross-covariances Σ𝑚

𝑝𝑜 need to be propagated as well. To illustrate the
cross-covariance between participants (𝑝) and non-participants (𝑜), we assume a stacked
belief

x𝑚 =

⎡⎣x𝑝

x𝑜

⎤⎦𝑚

= 𝒩

⎛⎝⎡⎣x̂𝑝

x̂𝑜

⎤⎦𝑚

,

⎡⎣Σ𝑝𝑝 Σ𝑝𝑜

ΣT
𝑝𝑜 Σ𝑜𝑜

⎤⎦𝑚⎞⎠ (6.15)

The propagated stacked belief’s uncertainty Σ𝑚 from 𝑡𝑚 to 𝑡𝑘 is

Σ𝑘 =

⎡⎣Φ𝑘|𝑚
𝑝𝑝 Σ𝑚

𝑝𝑝Φ𝑘|𝑚
𝑝𝑝

T
+ Q𝑘|𝑚

𝑝𝑝 Φ𝑘|𝑚
𝑝𝑝 Σ𝑚

𝑝𝑜(Φ𝑘|𝑚
𝑜𝑜 )T + Q𝑘|𝑚

𝑝𝑜

∙ Φ𝑘|𝑚
𝑜𝑜 Σ𝑚

𝑜𝑜(Φ𝑘|𝑚
𝑜𝑜 )T + Q𝑘|𝑚

𝑜𝑜

⎤⎦ . (6.16)

Assuming no inter-node process noise (Q𝑘|𝑚
𝑝𝑜 = 0) the cross-covariance between a

participant and others can be factorized Σ𝑚
𝑝𝑜 = 𝒮𝑚

𝑝𝑜

(︀
𝒮𝑚

𝑜𝑝

)︀T (see Equation (6.2)).
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By applying the factorization of Equation (6.2) on Equation (6.16), the propagation
of the stacked uncertainty is

Σ𝑘 =

⎡⎣Φ𝑘|𝑚
𝑝𝑝 Σ𝑚

𝑝𝑝Φ𝑘|𝑚
𝑝𝑝

T
+ Q𝑘|𝑚

𝑝𝑝 Φ𝑘|𝑚
𝑝𝑝 𝒮

𝑚
𝑝𝑜

(︀
𝒮𝑚

𝑜𝑝

)︀T
(︁

Φ𝑘|𝑚
𝑜𝑜

)︁T

∙ Φ𝑘|𝑚
𝑜𝑜 Σ𝑚

𝑜𝑜(Φ𝑘|𝑚
𝑜𝑜 )T + Q𝑘|𝑚

𝑜𝑜

⎤⎦ . (6.17)

The factorization allows propagating the cross-covariance between participants and
non-participants

Σ𝑘
𝑝𝑜 = 𝒮𝑘

𝑝𝑜

(︁
𝒮𝑘

𝑜𝑝

)︁T
= Φ𝑘|𝑚

𝑝𝑝 𝒮
𝑚
𝑝𝑜

(︁
Φ𝑘|𝑚

𝑜𝑜 𝒮
𝑚
𝑜𝑝

)︁T
, (6.18)

and can be performed between two time instances 𝑡𝑚 and 𝑡𝑘 exactly, fully distributed,
and isolated on each node by multiplying the state transition matrices Φ𝑘|𝑚

{𝑝𝑝,𝑜𝑜} on the
corresponding factorized cross-covariances 𝒮𝑚

{𝑜𝑝,𝑝𝑜} [121].
As a state transition matrix Φ𝑘|𝑚 can be the accumulated product of individual tran-

sition matrices, Φ𝑘|𝑚 =
∏︀𝑘

𝑖=𝑚 Φ𝑖, the state propagation on individual nodes, can be
performed at different rates without loss of generality.

In a node’s isolated propagation step, only a subset of the full state’s uncertainty is
available (missing elements indicated by − and ̂︀= means corresponds to)

Σ̆𝑚̂︀=
⎡⎣Σ𝑝𝑝 𝒮𝑝𝑜

− −

⎤⎦𝑚

, (6.19)

which can be propagated exactly by each node by applying the state transition matrix
Φ𝑘|𝑚

𝑝𝑝 on their partition of the factorized cross-covariance 𝒮𝑚
𝑝𝑜

Σ̆𝑘 ̂︀=
⎡⎣Φ𝑘|𝑚

𝑝𝑝 Σ𝑚
𝑝𝑝Φ𝑘|𝑚

𝑝𝑝

T
+ Q𝑘|𝑚

𝑝𝑝 Φ𝑘|𝑚
𝑝𝑝 𝒮

𝑚
𝑝𝑜

− −

⎤⎦ . (6.20)

In order to be modular and scalable, the cross-covariances between S𝑝 and individual
non-participants S𝑜𝑖

∈ S𝑜 are held in 𝒞 and not in a joint block Σ𝑝𝑜. Therefore, applying
the state transmission matrix directly on all factors (e.g. [95]) of 𝒞𝑝 (of the node S𝑝) scales
linearly with the number of known and correlated nodes

𝒮𝑘
𝑝𝑜 = Φ𝑘|𝑚

𝑝𝑝 𝒮
𝑚
𝑝𝑜, 𝑜 ∈ {1 . . . 𝑁 |𝑜 ̸∈ 𝑝}. (6.21)

To restore cross-covariance factors per node at the moment they are needed (rather
than on all factors at each filter step), we chronologically insert the correction term Φ𝑝𝑝

for factorized cross-covariances in the propagation step into the correction buffer ℬ at 𝑡𝑘

ℬS𝑝
(𝑡𝑘) = Φ𝑘|𝑚

𝑝𝑝 . (6.22)

Once nodes are able to exchange information, the exactly propagated cross-covariance
can be restored according to Equation (6.9).

If the propagation step is triggered/driven either by a control input or a proprioceptive
sensor measurement, these inputs are stored in measurement buffer 𝒵S𝑝

.

6.3.3 Isolated Observation
An observation is modeled through a measurement function ℎ of a state x and v ∼
𝒩 (0,R) defining an independent Gaussian noise

z𝑚 = ℎ(x𝑚) + v𝑚. (6.23)
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For legibility, we will neglect the measurement time index {}𝑚 and assume that a a-
priori belief exist at 𝑡𝑚. Conceptually, private and joint observations are the same, while
the latter is coupling multiples nodes’ outputs, i.e., it requires estimates from multiple
nodes.

Similar to Equation (6.15), we assume a stacked belief x =
[︀
x𝑝; x𝑜

]︀
. In this case,

the measurement is described by a nonlinear function. The joint measurement sensitivity
matrix H =

[︀
H𝑝, H𝑜

]︀
, with measurement Jacobian of participants H𝑝 linearized at the

joint a priori estimate x̂(−)

H𝑝 =
[︁

𝜕ℎ(x)
𝜕x𝑝

⃒⃒
x̂

]︁(−)
. (6.24)

Following the definition of non-participating estimators, their beliefs are not involved in
the current observation and thus their measurement Jacobian H𝑜 is

H𝑜 =
[︁

𝜕ℎ(x)
𝜕x𝑜

⃒⃒
x̂

]︁(−)
= 0, (6.25)

leading finally to a measurement Jacobian for isolated observations

H =
[︂[︁

𝜕ℎ(x𝑝)
𝜕x𝑝

⃒⃒
x̂(−)

𝑝

]︁
0
]︂
. (6.26)

Therefore, the corrected stacked a posteriori covariance for participating and non-
participating estimators is

Σ(+) =

⎡⎣(I−K𝑝H𝑝)Σ(−)
𝑝𝑝 (I−K𝑝H𝑝)Σ(−)

𝑝𝑜

(Σ(+)
𝑝𝑜 )T −K𝑜H𝑝Σ(−)

𝑝𝑜 + Σ(−)
𝑜𝑜

⎤⎦ (6.27)

with Kalman gain ⎡⎣K𝑝

K𝑜

⎤⎦ =

⎡⎣Σ(−)
𝑝𝑝 HT

𝑝

Σ(−)
𝑝𝑜 HT

𝑝

⎤⎦(︁H𝑝Σ(−)
𝑝𝑝 HT

𝑝 + R
)︁−1

, (6.28)

and R being the measurement noise covariance. The a posteriori mean is⎡⎣x̂(+)
𝑝

x̂(+)
𝑜

⎤⎦ =

⎡⎣x̂(−)
𝑝 �K𝑝r

x̂(−)
𝑜 �K𝑜r

⎤⎦ , (6.29)

with measurement residual r = �ẑ� z3.
Note that the impact of a cross-covariance between participants and non-participants

Σ(−)
𝑝𝑜 on the Kalman gain K𝑜 can be seen in Equation (6.28).

In order to achieve an isolated observation among the participants and to avoid in-
formation exchange with non-participants, Luft et al. proposed in [95] to neglect non-
participants’ beliefs, which is equal to assume no Kalman gain for non-participants, K𝑜 =
0, and concurs with the idea of the Schmidt-Kalman filter to account for correlated but
unknown constant states [129]. This assumption leads to the approximated a posteriori
belief for non-participants

x̆(+)
𝑜 ∼ 𝒩

(︁
˘̂x(+)

𝑜 , Σ̆(+)
𝑜𝑜

)︁
= x(−)

𝑜 ∼ 𝒩
(︁

˘̂x(−)
𝑜 , Σ̆(−)

𝑜𝑜

)︁
. (6.30)

In consequence, non-participants do not benefit from the participants’ observations as they
obtain no corrections.

However, participants need to correct the a priori cross-covariance referring to non-
participants, Σ(−)

𝑝𝑜 , which brings us to the differentiation between private and joint obser-
vations in the following subsections.

The measurement is stored in one participant’s buffer 𝒵S𝑖
, e.g., the interim master S𝑖.

3According to the error-definition in our ESEKF formulation x̃ = �x̂� x.
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Isolated private observations

In an isolated private observation, which relates the observation to the estimate of a single
node, only a subset of the full states’ covariance is available

Σ̆(−)̂︀=
⎡⎣Σ𝑝𝑝 𝒮𝑝𝑜

− −

⎤⎦(−)

(6.31)

The participant can correct the cross-covariance factor with respect to non-participants
𝒮(+)

𝑝𝑜 exactly by observing Σ(−)
𝑝𝑜 in Equation (6.27) with

𝒮(+)
𝑝𝑜 =

(︀
I−K𝑝H𝑝

)︀
𝒮(−)

𝑝𝑜 . (6.32)

This leads to the correction factor for (isolated) private observations

ϒ𝑝𝑝 =
(︀
I−K𝑝H𝑝

)︀
= Σ(+)

𝑝𝑝

(︁
Σ(−)

𝑝𝑝

)︁−1
, (6.33)

from Σ(+)
𝑝𝑝 =

(︀
I−K𝑝H𝑝

)︀
Σ(−)

𝑝𝑝 ≡ ϒ𝑝𝑝Σ(−)
𝑝𝑝 .

Note, in a recursive filter, an estimate is always first predicted then corrected. There-
fore, a buffer element for the observations at 𝑡𝑚 already exists as shown in Figure 6.3 and
means that ℬS𝑝

(𝑡𝑚) ̸= 0. Thus, the correction factor ϒ has to be left-multiplied on that
element in order to inject information from the current observation into existing buffer
elements.

ℬS𝑝
(𝑡𝑚) = ϒ𝑚

𝑝𝑝ℬS𝑝
(𝑡𝑚) . (6.34)

By considering this correction term for cross-covariances relating to non-participants,
the approximated full covariance matrix neglecting updates on non-participating beliefs
Σ̆(+) ∈ S+ is conservative compared to the exact/optimal joint a posteriori covariance Σ(+)

(6.27), but remains credible as the resulting covariance error is positive semi-definite [35]

Σ̃(+) = Σ̆(+) −Σ(+) =

⎡⎣0 0

0 K𝑝H𝑝Σ(−)
𝑝𝑜

⎤⎦ ∈ S+ ⪰ 0. (6.35)

Isolated joint observations

To derive the corrections for cross-covariances of non-participants Σ(+)
𝑝𝑜 for each partici-

pant, we need to consider the individual block matrix terms. Assuming two participants
S𝑖 and S𝑗 , and others S𝑜 ⊆ S leads to a stacked belief xT =

[︁
xT

𝑖 xT
𝑗 xT

𝑜

]︁
with a joint

covariance

Σ =

⎡⎢⎢⎢⎣
Σ𝑖𝑖 Σ𝑖𝑗 Σ𝑖𝑜

∙ Σ𝑗𝑗 Σ𝑗𝑜

∙ ∙ Σ𝑜𝑜

⎤⎥⎥⎥⎦ (6.36)

and the joint measurement matrix H =
[︁
H𝑖 H𝑗 H𝑜

]︁
, with H𝑜 = 0 as the corresponding

beliefs are not involved in the current observations. The Kalman gain for the full state is

K = Σ(−) (H)T (S)−1 (6.37)

with the innovation uncertainty S = HΣ(−) (H)T + R. The corresponding a posteriori
joint covariance is obtained by

Σ(+) = (I−KH) Σ(−). (6.38)
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As H𝑜 = 0 (refer to Equation (6.25)), one can simplify the individual matrices and the
innovation uncertainty becomes

S =
[︁
H𝑖 H𝑗 0

]︁
Σ(−)

[︁
H𝑖; H𝑗 ; 0

]︁
+ R

=
(︁

H𝑖Σ
(−)
𝑖𝑖 + H𝑗Σ(−)

𝑗𝑖

)︁
HT

𝑖 +
(︁

H𝑖Σ
(−)
𝑖𝑗 + H𝑗Σ(−)

𝑗𝑗

)︁
HT

𝑗 + R,
(6.39)

thus, the Kalman gain

K =

⎡⎢⎢⎢⎣
K𝑖

K𝑗

K𝑜

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
Σ𝑖𝑖H

T
𝑖 + Σ𝑖𝑗HT

𝑗

Σ𝑗𝑖H
T
𝑖 + Σ𝑗𝑗HT

𝑗

Σ𝑜𝑖H
T
𝑖 + Σ𝑜𝑗HT

𝑗

⎤⎥⎥⎥⎦ (S)−1 . (6.40)

As nodes are maintaining only factorized cross-covariances and communication to oth-
ers S𝑜 should be avoided, only a subset of the joint uncertainty in Equation (6.36) is
available at the moment of the isolated joint observation⎡⎢⎢⎢⎣

Σ𝑖𝑖 𝒮𝑖𝑗 𝒮𝑖𝑜

𝒮𝑗𝑖 Σ𝑗𝑗 𝒮𝑗𝑜

− − −

⎤⎥⎥⎥⎦
(−)

̂︀=
⎡⎢⎢⎢⎣

Σ𝑖𝑖 Σ𝑖𝑗 𝒮𝑖𝑜

∙ Σ𝑗𝑗 𝒮𝑗𝑜

− − −

⎤⎥⎥⎥⎦
(−)

̂︀=Σ̆(−). (6.41)

The a posteriori covariance of participants Σ(+)
𝑝𝑝 =

⎡⎣Σ𝑖𝑖 Σ𝑖𝑗

∙ Σ𝑗𝑗

⎤⎦(+)

can be calculated

exactly

Σ(+)
𝑖𝑖 =

[︁
(I−K𝑖H𝑖)Σ

(−)
𝑖𝑖 −K𝑖H𝑗Σ(−)

𝑗𝑖

]︁
, (6.42)

Σ(+)
𝑗𝑗 =

[︁
(I−K𝑗H𝑗)Σ(−)

𝑗𝑗 −K𝑗H𝑖Σ
(−)
𝑖𝑗

]︁
, (6.43)

Σ(+)
𝑖𝑗 =

[︁
(I−K𝑖H𝑖)Σ

(−)
𝑖𝑗 −K𝑖H𝑗Σ(−)

𝑗𝑗

]︁
. (6.44)

and Σ𝑘
𝑖𝑗 = 𝒮𝑘

𝑖𝑗

(︁
𝒮𝑘

𝑗𝑖

)︁T
, (see Equation (6.2)).

The exact a posteriori cross-covariance between the participant and non-participants
Σ(+)

{𝑖,𝑗}𝑜 would be

Σ(+)
𝑖𝑜 = (I−K𝑖H𝑖)Σ

(−)
𝑖𝑜 + K𝑖H𝑗Σ(−)

𝑗𝑜 , (6.45)

Σ(+)
𝑗𝑜 = (I−K𝑗H𝑗)Σ(−)

𝑗𝑜 + K𝑗H𝑖Σ
(−)
𝑖𝑜 . (6.46)

In an isolated/decoupled update, the a priori cross-covariances Σ(−)
𝑖𝑜 and Σ(−)

𝑗𝑜 are
not available, since we have only the factorized cross-covariance 𝒮(−)

{𝑖,𝑗}𝑜 of the participants
relating to the non-participants, as shown in Equation (6.41).

Therefore, Luft et al. proposed in [95] to express the relation between Σ(−)
𝑗𝑜 and Σ(−)

𝑖𝑜

as

Σ(−)
𝑗𝑜 ≈ Σ̆(−)

𝑗𝑜 = Σ(−)
𝑗𝑖 (Σ(−)

𝑖𝑖 )−1Σ(−)
𝑖𝑜 , (6.47)

Σ(−)
𝑖𝑜 ≈ Σ̆(−)

𝑖𝑜 = Σ(−)
𝑖𝑗 (Σ(−)

𝑗𝑗 )−1Σ(−)
𝑗𝑜 . (6.48)



6. The Isolated Kalman Filtering Paradigm 145

Similarly, Georgescu et al. derived in [47] an explicit solution to the problem of com-
pleting a partially specified symmetric positive-definite block matrix that maximizes its
determinant, in order to complete a partially defined correlation matrix.

The maximal determinant completion is equivalent to the positive semidefinite matrix
selection problem and requires solving a convex optimization problem on S+.

The explicit solution for a symmetric block matrix S ∈ S with an unknown block
element U𝑖𝑘

S(U𝑖𝑘) =

⎡⎢⎢⎢⎣
S𝑖𝑖 S𝑖𝑗 U𝑖𝑘

ST
𝑖𝑗 S𝑗𝑗 S𝑗𝑘

UT
𝑖𝑘 ST

𝑗𝑘 S𝑘𝑘

⎤⎥⎥⎥⎦ (6.49)

that maximizes its determinant (note that minimizing the negative of a determinant is
equal to maximizing it)

Û𝑖𝑘 = arg min
U𝑖𝑘

−det(S(U𝑖𝑘)) subject to S(U𝑖𝑘) ∈ S+ (6.50)

is given by
Û𝑖𝑘 = S𝑖𝑗S−1

𝑗𝑗 S𝑗𝑘. (6.51)

The maximum determinant completion of a symmetric positive-definite block matrix re-
sults in relevant properties [47], such as (i) if a positive semi-definite completion exists,
then there exists only one solution, meaning that a unique symmetric positive-definite
matrix is obtained, and (ii) the maximum determinant completion equals the maximum
entropy completion on a covariance matrix for a multivariate normal model, meaning that
it results in the maximally uncertain/inflated/pessimistic covariance and that the block
element of its information matrix is (S(U𝑖𝑘))−1

𝑖𝑘 = 0.

Lemma 5 The approximation proposed by Luft et al. in [95] for the cross-covariance
between individual participants and non-participants equals to the maximum determinant
completion of a positive semidefinite block matrix, such that the a priori stacked joint
covariance is assumed to be maximally uncertain with respect to the cross-covariances to
non-participants at the moment of a joint update between participants.

Proof: It can be easily proven that Luft’s approximation in Equation (6.47) equals
to Equation (6.51) by swapping the participants 𝑖 and 𝑗 in the stacked belief leading to
x′ =

[︁
x𝑗 ; x𝑖; x𝑜

]︁
.

Inserting the maximum determinant completion Σ̆(−)
𝑗𝑜 from Equation (6.47) into Equa-

tion (6.45) leads to an approximated a posteriori cross-covariance Σ̆(+)
𝑖𝑜

Σ(+)
𝑖𝑜 ≈ Σ̆(+)

𝑖𝑜

=(I−K𝑖H𝑖)Σ
(−)
𝑖𝑜 + K𝑖H𝑗Σ̆(−)

𝑗𝑜

=(I−K𝑖H𝑖)Σ
(−)
𝑖𝑜 + K𝑖H𝑗Σ(−)

𝑗𝑖

(︁
Σ(−)

𝑖𝑖

)︁−1
Σ(−)

𝑖𝑜 .

(6.52)

Solving for Σ(−)
𝑗𝑖 in Equation (6.42) and inserting into Equation (6.52) leads to the a

posteriori cross-covariance between the participant 𝑖 and others 𝑜

Σ(+)
𝑖𝑜 ≈ Σ̆(+)

𝑖𝑜 = Σ(+)
𝑖𝑖

(︁
Σ(−)

𝑖𝑖

)︁−1
Σ(−)

𝑖𝑜 , (6.53)
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which can be generalized to a generic approximation for correcting cross-covariances be-
tween participants and non-participants in isolated joint updates

Σ(+)
𝑢𝑣 ≈ Σ̆(+)

𝑢𝑣 = Σ(+)
𝑢𝑢

(︁
Σ(−)

𝑢𝑢

)︁−1
Σ(−)

𝑢𝑣 , 𝑢 ∈ P, 𝑣 ∈ P̄, (6.54)

and allows us to define the joint correction term Λ for each participant S𝑢

Λ𝑢𝑢 = Σ(+)
𝑢𝑢

(︁
Σ(−)

𝑢𝑢

)︁−1
, 𝑢 ∈ P. (6.55)

Again, the correction factor of each participant 𝑢 ∈ P for joint updates Λ𝑢𝑢 has to be
left-multiplied on the participants’ correction buffers

ℬS𝑢

(︁
𝑡𝑘
)︁

= Λ𝑘
𝑢𝑢ℬS𝑢

(︁
𝑡𝑘
)︁
, 𝑢 ∈ P. (6.56)

At this point it is worth mentioning that, first, the correction term implicitly assumes
the maximum determinant completion, meaning (a) it is not explicitly computed, (b) the
stacked joint a-priori covariance Σ̆(−)

𝑝 ∈ S+ of participants is positive semidefinite as
the correction terms applied to the participants cross-covariance factors 𝒮 stem from a
maximum determinant completion, and (c) the stacked joint a-posteriori covariance Σ̆(+)

𝑝 ∈
S+ of participants remains positive semidefinite. Second, each participant needs to compute
only one common correction term Λ which is valid for all its cross-covariance factors.
Third, the a-posteriori covariance of participants can be computed using the numerically
more stable Joseph’s form4 providing better numerical stability to the computation of the
elements in the correction buffer. Fourth, the correction term is equal to the correction
term defined for private observations in Equation (6.33).

Similarly to private isolated observation and according to the Schmidt-Kalman filter,
we assume the Kalman gain for non-participants to be K𝑜 = 0 leading finally to the
approximated a-posteriori joint covariance Σ̆(+) of the full state

Σ(+) ≈ Σ̆(+) =

⎡⎢⎢⎢⎣
Σ(+)

𝑖𝑖 Σ(+)
𝑖𝑗 Σ̆(+)

𝑖𝑜

∙ Σ(+)
𝑗𝑗 Σ̆(+)

𝑗𝑜

∙ ∙ Σ(−)
𝑜𝑜

⎤⎥⎥⎥⎦ /∈ S+. (6.57)

This leads in general to a non-positive semidefinite approximated a-posteriori global
covariance Σ̆(+) and to two downsides of the proposed IKF scheme. First, non-participants
do not become (indirectly) correlated to a participant through other participants’ cross-
correlations [95]. For instance, by observing Equation (6.45), if Σ(−)

𝑖𝑜 = 0 and Σ(−)
𝑗𝑜 ̸=

0, then, in an exact update an (indirect) correlation would be obtained by Σ(+)
𝑖𝑜 ̸= 0.

Since, Equation (6.55) is applied just on existing cross-covariance factors, these indirect
correlations through other participants are neglected. In other words, correlations can only
be obtained among participants of joint observations. Second, correlated non-participants
obtain no correction5. These approximations are a cost to be paid to obtain much better
scalability while still preserving credible estimates in various scenarios (see Section 6.4).

4The Joseph’s form of the a posteriori covariance Σ(+) = (I − KH) Σ(−) (I − KH)T +KRKT is known
to be numerically more stable than the simplified form Σ(+) = (I − KH) Σ(−).

5Worst case are totally correlated non-participants, e.g., if the belief of a participant S𝑖 is a stochastic
clone of a non-participant S𝑗 , with Σ𝑖𝑖 ≡ Σ𝑗𝑗 and Σ𝑖𝑗 = Σ𝑖𝑖, as any correction on S𝑖 or S𝑗 is influencing
the belief equivalently, which can be proven easily by observing the individuals’ Kalman gains in Equa-
tion (6.40) which are in this particular case identically K𝑖 = K𝑗 assuming H𝑖𝑖 = I and H𝑗𝑗 = 0 or vice
versa.
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6.3.4 Delayed Observations

In Section 6.3.3, we made the assumption, that an a-priori belief x𝑚(−)
𝑝 of the participants

from the stacked belief x𝑚 =
[︁
x𝑝; x𝑜

]︁𝑚
exist for the measurement taken at 𝑡(𝑚) in the

form
z𝑚 = ℎ(x𝑚) + 𝜈𝑚

𝑧 .

As already discussed in Section 2.9.8, sensor data in AINS are typically delayed or
processed out-of-sequence. In such cases, we assume that the measurement at 𝑡(𝑚) is
bounded by two previous beliefs x𝑎

𝑝 and x𝑏
𝑝 that are maintained in 𝒳 𝑖, 𝑖 ∈ P of the

participants. Consequently, 𝑡𝑎 ≤ 𝑡𝑚 ≤ 𝑡𝑏 and each participant S𝑝 ∈ P has to create a
pseudo/virtual belief at 𝑡𝑚.

Figure 6.5 shows the procedure in case of delayed isolated private observations.
For each participant, we need to obtain the closest belief before the delayed event

happened
{x̂𝑎

𝑖 ,Σ
𝑎
𝑖𝑖, 𝑡

𝑎} = max(find(𝒳 𝑖 < 𝑡𝑘)), 𝑖 ∈ P (6.58)

Then we have to predict starting from that previous belief until the event

x̂𝑚
𝑖 ,Σ

𝑚
𝑖𝑖 ,Φ

𝑚|𝑎 = propagate𝑖(x̂
𝑎
𝑖 ,Σ

𝑎
𝑖𝑖, . . . , 𝑡

𝑎, 𝑡𝑚), 𝑖 ∈ P (6.59)

with
{x̂𝑏

𝑖 ,Σ
𝑏
𝑖𝑖, 𝑡

𝑏} = min(find(𝒳 𝑖 > 𝑡𝑘)), 𝑖 ∈ P (6.60)

and insert the new correction factor into the participants buffers

ℬ𝑖(𝑡
𝑚) = Φ𝑚|𝑎

𝑖𝑖 , 𝑖 ∈ P. (6.61)

After performing an intermediate prediction step from 𝑡𝑎 until 𝑡𝑚, the appropriate
state transition matrix is inserted into the correction buffer. Note that we will have to
continue the propagation later (after the delayed measurement was applied) from the
virtual/interpolated state.

Now the exact procedure as for non-delayed isolated observation can be performed, see
Section 6.3.3.

After the pseudo belief was corrected (step two in Figure 6.5), we need to delete all
entries after the measurement event from the belief history 𝒳 , factorized cross-covariance
dictionary 𝒞, and the correction buffer ℬ

delete({𝒳 S𝑖
,𝒞S𝑖

,ℬS𝑖
} > 𝑡𝑚), 𝑖 ∈ C, (6.62)

with C being a set of post-correlated instances which led to factorized cross-covariances
rooted at each participant after the delayed observations

C = C′ ∩ unique({𝒞S𝑖
→ keys() > 𝑡𝑚}, 𝑖 ∈ C′), until C ≡ C′,C′

0 = P. (6.63)

Note, that the set of post-correlated instances C can be computed either iteratively starting
from the participants until convergence (see above) or recursively.

Then all measurements are reprocessed, beginning from the pseudo state onward using
all measurement in all post-correlated instances

M𝑖 := {M𝑙
𝑖} := 𝒵S𝑖

> 𝑡𝑚, 𝑖 ∈ C. (6.64)

by sorting them chronologically

M = sort({M1, . . . ,M𝑁}),with prop < private < joint. (6.65)
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Figure 6.5: Delayed private measurement handling in an IKF. Given a state propagation
and an exteroceptive sensor for state correction. The exteroceptive sensor provides delayed
private measurements at different rates, and it is assumed that the sources for the timestamps
are synchronized. At 𝑡𝑐𝑢𝑟𝑟, the IKF receives a measurement, which relates to an event
that falls between two propagation measurements. In order to fuse that measurement, first,
an interpolated (pseudo/virtual) belief needs to be created. Second, the pseudo belief is
corrected using the delayed measurement. Third, all elements in the correction and factorized
cross-covariance buffers after that event need to be deleted. Lastly, all measurements in the
measurement buffer after that event, are reprocessed in order to propagate the obtained
correction forward in time. In this example, 𝒞 is omitted, but the third and fourth step
would affect the history of cross-covariances too.

Since measurements are processed isolated, concurrent measurements need to be sorted by
prioritizing propagation over private observations and private over joint observations6. In a
centralized equivalent fusion architecture, a prioritization of private over joint observation
is not needed. This set of measurements M needs to be reapplied sequentially and will
restore an updated and re-linearized version of the previously deleted elements within the
buffers.

Processing measurements sequentially in a distributed system can be achieved, e.g., by
triggering and synchronizing individual nodes via an interim master node. For instance,
the interim master that processed the delayed measurements would need to gather all
measurements from all post-correlated nodes (in case of limited communication range, they
need to be relayed). After sorting them, measurements are directed to individual nodes
(proprioceptive measurements can be processed in parallel) and waits until they complete
their task by sending acknowledgments back to the interim master. Consequently, during
the course of delayed measurements, in the limit a persistent all-to-all communication
is needed. In other words: the communication link complexity of 𝒪(|P|) for non-delayed
isolated joint observations and 𝒪(1) for non-delayed private observations is 𝒪(|S|) for
delayed isolated observations.

The scenario depicted in Figure 6.6, illustrates the measurement history of four filter
instances, while at 𝑡 = 5 a delayed joint measurement between S1 and S2 is obtained.
After processing the delayed measurement, all measurements within the gray box need to
be processed synchronously and in an appropriate order (see Equation (6.65)). Note that
performing only measurements among participants (highlighted by the green box), would

6As already mentioned, some dynamical systems are modeled in a way, that a control input or a sensor
measurement is advancing the state in time.
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t1 2 3 4 50

Figure 6.6: Shows the measurements obtained on a network of four instances
{S1, S2, S3, S4}. Arrows in orange are control inputs u, private observations are held in
red, and joint observations in blue. The joint observation at 𝑡 = 5 held in magenta indicates
a delayed measurement H1

1,2 originating from 𝑡 = 1. In order to restore the beliefs at 𝑡 = 5,
all intermediate measurements after that event (within the gray box) need to be reprocessed
in an appropriate order.

violate correlations introduced with H3
3,2, between S3 and S2. S2 would delete the cross-

covariance factor 𝒮3
23, while S3 still maintains the counterpart 𝒮3

32. As the observation
H3

3,2, is not reprocessed, S3 would be correlated to a deleted belief of S2 and the stacked
belief [x2; x3] of S2 and S3 cannot be restored in a future joint observation.

6.3.5 The IKF library
We made the source of a Isolated Kalman Filtering (IKF) framework (ikf_lib) with sup-
port for out-of-sequence measurements available to the public7. This library implements
the IKF paradigm in abstract classes, where actual estimation problems can derive from. It
aims at demonstrating the capabilities and properties of the paradigm. Figure 6.7 shows
a simplified UML class diagram of the most relevant objects. The abstract base class
IKalmanFilter maintains a history of abstract estimates, IBelief, which provide an inter-
face for actual realizations, and a history of processed measurements MeasData. MeasData
objects are used to represent actual measurements by a measurement vector z, measure-
ment covariance R, timestamps relating to the event of perceiving information and when
the measurement was received/processed in filter, the corresponding sensor’s unique ID,
and meta information for debugging and logging purposes. The abstract class IIsolated-
KalmanFilter derives from IKalmanFilter and allows processing joint updates isolated, i.e.,
to couple the outputs of multiple IIsolatedKalmanFilter instances. These are maintained
centralized in the IsolatedKalmanFilterHandler, which accesses instances via their unique
ID. Measurements can be either provided to the individual instances or the handler.

7https://github.com/aau-cns/ikf_lib

https://github.com/aau-cns/ikf_lib


6. The Isolated Kalman Filtering Paradigm 150

*

IBelief

- m_mean: Eigen::VectorXd
- m_Sigma: : Eigen::MatrixXd
- m_timestamp : ikf::Timestamp

+ clone() : IBelief
+ correct(Eigen::VectorXd const&)

IIsolatedKalmanFilter

- HistCrossCovFactors: HistDict_t
- ptr_Handler : std::shared_ptr<IsolatedKalmanFilterHandler>

typedef std::unordered_map<size_t, TTimeHorizonBuffer<Eigen::MatrixXd>> HistDict_t
typedef std::unordered_map<size_t, std::shared_ptr<IIsolatedKalmanFilter>> DictID_t
typedef std::shared_ptr<IBelief> ptr_belief;
typedef std::shared_ptr<IsolatedKalmanFilterHandler> ptr_handler,
typedef std::shared_ptr<IIsolatedKalmanFilter> ptr_IKF;

IKalmanFilter

- HistBelief : TTimeHorizonBuffer<ptr_belief>
- HistMeas : TTimeHorizonBuffer<MeasData, TMultiHistoryBuffer<MeasData>>
- max_time_horizon_sec :double
- m_handle_delayed_meas: bool

* 1

MeasData

+ t_m/t_p : Timestmap
+ id_sensor : size_t
+ meas_tpye/meta_info : string
+ obs_type : eObservationType
+ z : Eigen::VectorXd
+ R : Eigen::MatrixXd

eObservationType < enum class

+ UNKNOWN = 0,
+  PROPAGATION = 1,
+  PRIVATE_OBSERVATION = 2,
+ JOINT_OBSERVATION = 3,

1

IsolatedKalmanFilterHandler

- id_dict : DictID_t
- HistMeas : TTimeHorizonBuffer<MeasData, TMultiHistoryBuffer<MeasData>>
- max_time_horizon_sec :double
- m_handle_delayed_meas : bool*

Mass_Spring_Damper_1D

ikf

Figure 6.7: Shows a simplified UML class diagram of the ikf_lib.

The centralized handler is well suited to modular sensor fusion (see Chapter 4), but
not for multi-agent CSE, as all filter instance, the handler, and the simulated data are held
in one process. Particular focus was on handling delayed measurements, and to provide a
generic and tested implementation of the paradigm.

6.3.6 Summary
The IKF allows exact isolated state propagation steps, since we assume decoupled dy-
namics and no other estimates are required. Isolated private and joint observations are
exact among participants, if they are not correlated to non-participants. If participants are
correlated to non-participants, the global joint covariance becomes non-positive semidefi-
nite, meaning the gobal belief follows a non-Gaussian distribution, while the a-priori and
a-posteriori stacked joint covariance of participants remains positive semidefinite. If esti-
mators perform an update, it is assumed that non-participants are, per definition, not rep-
resented in the measurements (i.e., in the update equations) H𝑜 = 0 (see Equation (6.25))
and that non-participating estimators obtain no correction K𝑜 = 0. Therefore, correlations
can only be obtained among participants of isolated observations.

The correlation between two estimators is maintained in two factorized cross-covariances
𝒮 (see Equation (6.2)) (each estimator maintains a factor), which obtains corrections from
the corresponding estimator (Φ for propagation, ϒ for private update, and Λ for joint up-
date). Once estimators perform another joint isolated observation, their cross-covariance
can be restored by applying corrections to the cross-covariance factors from their previ-
ous encounter (see Figure 6.3). After the joint update, new cross-covariance factors are
calculated and stored in each participant’s container 𝒞S𝑖

, 𝑖 ∈ P.
In case a measurement is obtained delayed, thus out-of-sequence, the bounding two

beliefs of the participant in the past needs to be found in the history of beliefs, 𝒳 S𝑖
, 𝑖 ∈ P.

Then one can either interpolate or perform a prediction from the older belief, to ob-
tain a interpolated (pseudo) belief, which is corrected by the delayed measurement. Next,
all state-related elements in the buffers relating to events after the delayed elements are
removed from participants and post-correlated instances (see Equation (6.63)). All mea-
surements after that event in the measurement buffers 𝒵S𝑖

, 𝑖 ∈ P ∩ C of participants and
post-correlated instances are re-applied synchronously in the correct order. Finally, the
delayed measurement is inserted chronologically sorted in the measurement buffer of the
interim master.
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6.4 Evaluation
In this section, both, the steady-state behavior and credibility of the proposed IKF paradigm
is evaluated on a mass-spring-damper system described in the following section. The cred-
ibility is compared against a full-state Kalman filter and a naive filter. The naive filter
neglects correlations between estimators by assuming independence between estimators in
case of relative updates.

6.4.1 Mass-spring-damper model
Without loss of generality, as toy example, we estimate the position and velocity of an
idealized mass-spring-damper system – a typical and well-studied problem – which is
attached to the ceiling as described in Figure 6.8. The system can be described using
Newton’s second law of motion

∑︀
𝐹 = 𝑚�̈� by

𝑚�̈� =
∑︁

𝐹 = 𝐹𝑔 − 𝐹𝑘 − 𝐹𝑐 = 𝑚𝑔 − 𝑘𝑥− 𝑐�̇�, (6.66)

with a spring stiffness constant 𝑘 in N/m, the damping constant 𝑐 in Ns/m, and the mass
𝑚 in kg A force 𝐹𝑔 = 𝑚 * 𝑔 is acting on the mass, with 𝑔 = 9.81 m/s2 being the Earth’s
gravitational constant. It can be rearranged to

�̈� = 𝑔 − 𝑘

𝑚
− 𝑐

𝑚
�̇�. (6.67)

The corresponding state space model with �̈� = �̇�, �̇� = �̇�, the state x = [𝑝; 𝑣], and the
control input 𝑢 = 𝑔 is ⎡⎣�̇�

�̇�

⎤⎦ =

⎡⎣ 0 1

− 𝑘
𝑚 − 𝑐

𝑚

⎤⎦⎡⎣𝑝
𝑣

⎤⎦+

⎡⎣0

1

⎤⎦ 𝑔, (6.68)

ẋ = Fx + B𝑢,x(0) = x0. (6.69)

We assume to observe the distance between the ceiling and the mass, and the relative
distance between two masses. The observed outputs are

𝑧𝑘
𝑖 = H𝑖x

𝑘 =
[︁
1 0

]︁
x𝑘

𝑖 , (6.70)

𝑧𝑘
𝑖,𝑗 = H𝑘

𝑖,𝑗

⎡⎣x𝑖

x𝑗

⎤⎦𝑘

=
[︁
−1 0 1 0

]︁⎡⎣x𝑖

x𝑗

⎤⎦𝑘

. (6.71)

The corresponding discrete-time linear time invariant system with a sample time Δ𝑡
and assuming piece wise constant control input between samples is⎡⎣𝑝

𝑣

⎤⎦𝑘+1

=

⎡⎣ 1 Δ𝑡

−Δ𝑡 𝑘
𝑚 1−Δ𝑡 𝑐

𝑚

⎤⎦𝑘 ⎡⎣𝑝
𝑣

⎤⎦𝑘

+

⎡⎣ 0

Δ𝑡

⎤⎦𝑘

𝑔𝑘, (6.72)

x𝑘+1 = Φ𝑘+1|𝑘x𝑘 + B𝑘
𝑑𝑢

𝑘,x0 = x0. (6.73)

Assuming a random white disturbance 𝑤𝑘 ∼ 𝒩
(︁

0, 𝜎2
𝑔

)︁
on the control input 𝑢𝑘 and

white noisy measurements {𝑧𝑖, 𝑧𝑖,𝑗}, we obtain a stochastic process for each mass-spring-
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Figure 6.8: Shows 𝑁 homogeneous mass-spring-damper systems attached to the ceiling,
with a spring stiffness constant 𝑘 in N/m, the damping constant 𝑐 in Ns/m, and the mass
𝑚 in kg. A constant force 𝐹𝑔 = 𝑚𝑔 is acting on the mass, with 𝑔 = 9.81 m/s2 being the
Earth’s gravitational constant. 𝑥(𝑡) is the distance from the ceiling to the mass. Arrows held
in purple are distance observations from the ceiling to a mass and between vertical positions
of the masses.

damper system 𝑖 in the form

x𝑘+1
𝑖 = Φ𝑘+1|𝑘

𝑖𝑖 x𝑘
𝑖 + B𝑘

𝑑(𝑢𝑘 + 𝑤𝑘),x0 = x0, (6.74)

𝑧𝑖 = H𝑖x𝑖 + 𝑣𝑘
𝑖 , (6.75)

𝑧𝑖,𝑗 = H𝑖,𝑗

⎡⎣x𝑖

x𝑗

⎤⎦𝑘

+ 𝑣𝑘
𝑖,𝑗 , (6.76)

with 𝑣𝑘
𝑖 ∼ 𝒩 (0,R𝑖) ,R𝑖 = 𝜎2

𝑖 , 𝑣𝑘
𝑖,𝑗 ∼ 𝒩

(︀
0,R𝑖,𝑗

)︀
,R𝑖,𝑗 = 𝜎2

𝑖,𝑗 , and the estimated state
x𝑖 ∼ 𝒩 (x̂𝑖,Σ𝑖𝑖). The process noise and measurement noise are not correlated.

The estimated covariance of the linear system is predicted through the state transition
matrix and incorporating the control input noise 𝑤𝑘

Σ𝑘+1
𝑖𝑖 = Φ𝑘+1|𝑘

𝑖𝑖 Σ𝑘
𝑖𝑖(Φ

𝑘+1|𝑘
𝑖𝑖 )T + Δ𝑡B𝑘

𝑑𝜎
2
𝑔(B𝑘

𝑑)T (6.77)

and the estimated mean is propagated via

x̂𝑘+1
𝑖 = Φ𝑘+1|𝑘

𝑖𝑖 x̂𝑘
𝑖 + B𝑘

𝑑𝑔
𝑘
𝑖 . (6.78)

6.4.2 Steady-state behavior
Since the IKF paradigm builds upon approximations which might lead to an inconsis-
tent global full state, we want to assess in this section, under which conditions the IKF
paradigm leads to credible estimates in comparison to a centralized Kalman filter im-
plementation. Given a set of three dynamically decoupled nodes, we will study different
observations configurations – so call observation graphs – and their expected behavior
at steady-state, like Mourikis and Roumeliotis did on relative pose measurement graphs
(RPMG) for ground robots in [109]. They show that an upper- and expected bound can be
computed by determining the maximal process and measurement or the average process
and measurement noise, respectively.

The steady-state behavior of the estimator allows us to draw conclusion to the filter’s
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stability. Note that the stability of the filter does not need a stable the dynamic system8,
but states need to be completely controllable and observable [10].

As covariance equations of the KF are independent of the actual measurements in
linear dynamic system, they can be iterated forward in time offline. Meaning the time
evolution of the covariance given an initial conditions and known noise characteristics
can be assessed, without obtaining actual measurements. The recursion of the covariance
using a prediction and update step is known as the Discrete-time matrix Riccati equation
(DARE)[10]

Σ𝑘+1|𝑘 = Φ𝑘

(︂
Σ𝑘|𝑘−1 −Σ𝑘|𝑘−1(H𝑘)T

(︁
H𝑘Σ𝑘|𝑘−1(H𝑘)T + R𝑘

)︁−1
H𝑘Σ𝑘|𝑘−1

)︂
(Φ𝑘)T + Q𝑘,

(6.79)
which translates into our notation, with 𝑘 + 1(−) = 𝑘 + 1|𝑘 and 𝑘(−) = 𝑘|𝑘 − 1 by

Σ𝑘+1(−) =Φ𝑘+1|𝑘
(︂

Σ𝑘(−) −Σ𝑘(−)(H𝑘)T
(︁

H𝑘Σ𝑘(−)(H𝑘)T + R𝑘
)︁−1

H𝑘Σ𝑘(−)
)︂

(Φ𝑘+1|𝑘)T

+ Q𝑘+1|𝑘.

(6.80)

The solution of the DARE for a time-invariant system converges to a finite steady-state
covariance Σ∞ provided that {Φ,H} are completely observable and that {Φ,C}, where
Q = CCT (C is the square root of Q) is completely controllable [10]. Σ∞ is a unique
solution which is independent of the initial condition/covariance Σ0. The steady-state
covariance is the solution of the algebraic Riccati equation

Σ∞ = Φ
(︁

Σ∞ −Σ∞HT(HΣ∞HT + R)−1HΣ∞
)︁

ΦT + Q, (6.81)

which can be solved directly or iteratively, and leads to a steady-state Kalman gain K∞ =
Σ∞HT(HΣ∞HT + R)−1.

The Ricatti equation can have a stable (steady-state) solution, even if the dynamic of
the system is unstable, assuming that the system is observable and controllable. A sufficient
condition to proof controllability is a full rank in the controllability matrix Rank(𝒞) =
𝑛 [50] with

𝒞 = [𝐵𝑑
0,Φ1|0𝐵𝑑

1, . . . ,Φ𝑘|𝑘−1𝐵𝑑
𝑘−1], (6.82)

which states that the process noise enters into each state component and prevents the
uncertainty of the estimated state from converging to zero and causes the covariance
to be positive definite [10]. Similarly, the observability matrix needs to have full rank
Rank(𝒪) = 𝑛 with

𝒪 = [𝐻0; 𝐻1Φ1|0; . . . ; 𝐻𝑘Φ𝑘|𝑘−1], (6.83)

which guarantees an information flow about each state component and prevents the un-
certainty to grow unbounded. This condition yields the existence of steady-state solution
Σ∞ that is positive definite S++ or positive semidefinite S+ [10].

In the absence of measurements (open-loop, with H = 0 or R−1 = 0), a linear discrete-
time dynamic system has no output that is observed, meaning it is a stochastic process,
e.g., in the form

x𝑘+1 = Ax𝑘 + w𝑘, (6.84)
8A discrete-time dynamic system is stable and only stable, if the (discrete-time) state transition matrix

Φ is stable. This is the case, when all (complex) eigenvalues/poles are within the unit circle, i.e., the norm
of eigenvalues is smaller than 1. If a single eigenvalue is greater one, the dynamic system is unstable.
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with x ∼ 𝒩 (x̂,Σ) and w ∼ 𝒩 (0,W) being random but uncorrelated variables. The
uncertainty evolves according to the Lyapunov differential equation

Σ𝑘+1 = AΣ𝑘AT + W, (6.85)

which is stable if the state transition matrix A is stable. If A is stable and W constant,
a unique steady state covariance can be found by solving the Lyapunov equation [10]

Σ∞ = AΣ∞AT + W. (6.86)

Scenarios

For the steady-state analysis we studied eleven different observation graphs/configura-
tions (denoted as scenario S{1,...,11}) as shown in Figure 6.9 for a network of estimating
nodes S := {S𝑖|𝑖 = 1, . . . , 𝑁}. In the first scenario S1, the nodes are obtaining no obser-
vations, meaning that the estimated states are not observable and the uncertainty grows
unbounded in case the system is not stable. In S2, each node obtains private observations
and the rank of each subsystem’s observabilty matrix is full Rank(𝒪𝑖) = 𝑛𝑖. In S3, cyclic
relative observations between nodes are obtained, thus no global information is obtained
and renders the system unobservable. S4 extends S3, with a single node obtaining private
observations, which renders the full state observable. In addition to S4, fully meshed rela-
tive observations are obtained in S6, while in S5 all nodes obtain private observations. In
S7, no node obtains private observation, just fully meshed relative observations (a complete
graph with bi-directional links). S8 extends S1 with a single joint observation between two
nodes, while in S9 all nodes are connected.

In S10, all except the first node are obtaining private measurements, while the first node
is relying on relative observation to the other nodes, leading to a star-based observation
graph9. A unidirectional star-based observation graph rooted at the first node and without
private measurements is realized in S11

10.
Please note, that Mourikis and Roumeliotis performed an in-depth performance anal-

ysis for different relative pose measurement graphs (RPMG) in [109], by investigating the
complete graph (S7), the cyclic graph (S3), the disconnected graph (S8), and the connected
graph (S9).

Simulation results

We conducted a steady-state covariance analysis for the previously described scenarios
using four (𝑁 = 4) homogeneous mass-spring-damper models (see Section 6.4.1) in MAT-
LAB and compared the resulting covariance by using either a full-state Kalman filter Σ∞

kf
or isolated Kalman filter instances Σ∞

ikf. The solution for the Kalman filter’s steady-state
covariance was computed by processing 10000 iterations of the DARE (see Equation (6.80))
on the global full state’s covariance x = [x1; . . . ; x𝑁 ]. In case of the isolated Kalman filter,
the recursive filter steps were modified to support isolate private and joint updates (see
Section 6.3.3).

The following parameters for mass-spring damper systems were used: a spring stiffness
constant 𝑘 = 1 N/m, the damping constant 𝑐 = 0.1 Ns/m, the mass 𝑚 = 1 kg, the gravi-
tational constant 𝑔 = 9.81 m/s2, control input noise 𝜎𝑔 = 0.1 m/s2, distance measurement
noise 𝜎𝑖 = 0.05 m, relative distance noise 𝜎𝑖,𝑗 = 0.05 m, the sampling period Δ𝑡 = 0.001 s,
and the initial uncertainty Σ0

𝑖𝑖 = I.
In Table 6.1, the trace of the full state’s uncertainty, the Frobenius norm ‖M‖𝐹 =√︁∑︀𝑛

𝑖=1
∑︀𝑚

𝑗=1 M2
𝑖,𝑗 of the difference between the covariance matrices

⃦⃦
Σ∞

𝑘𝑓 −Σ∞
𝑖𝑘𝑓

⃦⃦
F and

9This constellation will be relevant in our modular sensor fusion approach described in Chapter 4.
10A common configuration, when relative information to stationary landmarks is observed in, e.g., VIO.
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S 𝑁 Q
R𝑖𝑖

R𝑖𝑖
R𝑖,𝑗

tr(Σ∞
𝑘𝑓 ) tr(Σ∞

𝑖𝑘𝑓 ) tr(Σ∞
𝑘𝑓 −Σ∞

𝑖𝑘𝑓 ) Σ∞
𝑘𝑓 ∈ S+ Σ∞

𝑖𝑘𝑓 ∈ S+
⃦⃦
Σ∞

𝑘𝑓 −Σ∞
𝑖𝑘𝑓

⃦⃦
F

⃦⃦
𝒦∞

𝑘𝑓 −𝒦∞
𝑖𝑘𝑓

⃦⃦
F

1 4 0.04 1 7.31537946 7.31537946 0 1 1 0 0

2 4 0.04 1 0.00015293 0.00015285 8e-08 1 1 4e-08 0.00236663

3 4 0.04 1 1.82898595 0.91167764 0.91730831 1 0 0.84261337 2.78239829

4 4 0.04 1 0.00023918 0.00025318 -1.4e-05 1 0 1.933e-05 1.13491998

5 4 0.04 1 0.00018888 0.00019349 -4.61e-06 1 1 4.93e-06 0.41905172

6 4 0.04 1 0.00021256 0.00022462 -1.206e-05 1 0 2.186e-05 1.44451797

7 4 0.04 1 1.82896187 0.91153385 0.91742803 1 0 0.8426316 2.78312948

8 4 0.04 1 3.65779502 3.68750993 -0.02971491 1 0 0.5709065 1.95671019

9 4 0.04 1 1.82900879 1.90292098 -0.07391219 1 0 0.76619192 3.45066432

10 4 0.04 1 0.00018997 0.00020251 -1.254e-05 1 1 1.052e-05 0.75044314

11 4 0.04 1 1.82900745 1.87115590 -0.04214844 1 0 0.7263689 3.33405208

4 4 0.01 1 0.00037189 0.00039221 -2.032e-05 1 0 3.22e-05 1.02053597

4 4 0.1 1 0.00018349 0.00019385 -1.036e-05 1 0 1.448e-05 1.19326302

4 4 1 1 9.906e-05 0.00010406 -5e-06 1 0 7.65e-06 1.27264922

4 4 10 1 5.526e-05 5.781e-05 -2.54e-06 1 0 4.26e-06 1.3013204

4 4 100 1 3.113e-05 3.254e-05 -1.41e-06 1 0 2.39e-06 1.3075512

4 4 1000 1 1.766e-05 1.847e-05 -8e-07 1 0 1.34e-06 1.304943

4 4 1 0.01 0.00027452 0.00028853 -1.401e-05 1 1 1.039e-05 0.32939867

4 4 1 0.1 0.00015437 0.00016119 -6.82e-06 1 1 5.96e-06 0.5338478

4 4 1 1 9.906e-05 0.00010406 -5e-06 1 0 7.65e-06 1.27264922

4 4 1 10 7.107e-05 7.518e-05 -4.11e-06 1 0 1.193e-05 2.26602958

4 4 1 100 5.603e-05 5.971e-05 -3.68e-06 1 0 1.573e-05 2.94257421

4 4 1 1000 4.769e-05 5.183e-05 -4.14e-06 1 0 1.839e-05 3.41465867

Table 6.1: Show the steady-state behavior using the mass-spring damper model in different
scenarios S{1,...,11} with 𝑁 = 4 instances. The experiment is described in Section 6.4.2.

the difference between the corresponding correlation matrices
⃦⃦
𝒦∞

𝑘𝑓 −𝒦∞
𝑖𝑘𝑓

⃦⃦
F (see Equa-

tion (2.3)) is listed11. The trace of the covariance difference tr(Σ∞
𝑘𝑓 −Σ∞

𝑖𝑘𝑓 ) < 0 allows us
to determine, if the total uncertainty using the IKF paradigm is more conservative, which
is always the case when global full state is rendered observable.

All, expect S3 and S7, lead to stable steady-state covariances using the IKF paradigm.
In the scenarios S3 (cyclic graph without private observations) and S7 (complete graph
without private observations), the IKF paradigm leads to overly optimistic, and thus, in-
consistent estimates, as existing correlations between participants and non-participants
are neglected. In contrast, scenario S11 leads to stable beliefs, despite performing purely
relative observations without private observations, as approximated correlations are main-
tained in the first node.

While the full state’s covariance remains positive semidefinite using the Kalman filter,
it does not always by applying the IKF paradigm.

In Table 6.1, the ratio between the noise parameters was changed for scenario S4 and
less accurate relative observations over private observation have a positive impact using
the IKF paradigm as filter instances are less correlated.

In Figure 6.10, Figure 6.11, and Figure 6.12, the final uncertainties for the scenarios
S1,...,11 are visualized.

11Since the Σ∞
𝑖𝑘𝑓 is potentially not positive semidefinite, we project it to S+ by setting negative eigen-

values to zero, before the correlation matrix 𝒦∞
𝑖𝑘𝑓 is computed.
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6.4.3 Credibility analysis
In our custom MATLAB framework for MMSF (see Section 4.4), we performed 30 Monte
Carlo simulation runs per fusion strategy on a set of five estimators (one for each mass-
spring-damper system) leading to a full state x =

[︀
x{1,...,5}

]︀
.

We specified the following parameters for each mass-spring damper system depending
on the ID 𝑖: a spring stiffness constant 𝑘 = 5 N/m, the damping constant 𝑐 = 0.1 Ns/m, the
mass 𝑚 = 𝑖 kg, the gravitational constant 𝑔 = 9.81 m/s2, control input noise 𝜎𝑔 = 0.1 m/s2,
distance measurement noise 𝜎𝑖 = 0.1 m, relative distance noise 𝜎𝑖,𝑗 = 0.1 m, the sampling
period Δ𝑡 = 0.001 s, the simulation duration 𝐷 = 20 s, and the initial uncertainty Σ0

𝑖𝑖 = I.
Absolute distance measurements are obtained only by the first estimator S1.

Table 6.2 shows the ARMSE (AR) and ANEES (AN) of the estimated states over 30
Monte Carlo simulation runs. The ANEES should be on average one for each, the position
and velocity estimates. Estimates using IKF tend to be slightly less accurate compared to
a centralized-equivalent estimator (C) operating in each filter step on the full-state vector.
On the other hand, estimators using IKF only require a second estimator at the moment
of isolated joint relative position updates.

Figure 6.13 shows the ANEES of three estimators’ position and velocity estimates using
either fusion strategy. The uncertainty of these estimates are predominately conservative
(the ANEES of the velocity is on average below 1) for the C and IKF approach (see Ta-
ble 6.2). Causes for this behavior may be discretization errors since other values are known
by simulation design. As expected, the ANEES of the naive filters indicate inconsistencies,
and thus, resulting in significantly higher estimation errors (see Figure 6.14). While filters
using the proposed IKF approach perform almost identically as a centralized equivalent
filter operating on the global full state – in particular the first estimator instance S1 that
obtains global information.

These results are significant for practical application as it reveals how little perfor-
mance gain may be obtained by considering correlations to non-participating estimators
in a centralized equivalent implementation in view of its limitations regarding scalabil-
ity and computational resources needed compared to IKF. On the other hand, neglecting
correlations between estimators at all in the naive approach leads to inconsistencies.
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Figure 6.10: Observation graphs S1,...,5: Left column shows the global covariance using
a Kalman filter Σ∞

𝑘𝑓 , the middle column using the IKF paradigm Σ∞
𝑖𝑘𝑓 , and right column

shows the difference. The mass-spring damper model is described in Section 6.4.1 with noise
parameters Q𝑛 = 0.012 and R𝑖𝑖 = R𝑖𝑗 = 0.052.
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Figure 6.11: Observation graphs S6,...,10: Left column shows the global covariance using
a Kalman filter Σ∞

𝑘𝑓 , the middle column using the IKF paradigm Σ∞
𝑖𝑘𝑓 , and right column

shows the difference. The mass-spring damper model is described in Section 6.4.1 with noise
parameters Q𝑛 = 0.012 and R𝑖𝑖 = R𝑖𝑗 = 0.052.
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Figure 6.12: Observation graph S11: Left column shows the global covariance using a
Kalman filter Σ∞

𝑘𝑓 , the middle column using the IKF paradigm Σ∞
𝑖𝑘𝑓 , and right column

shows the difference. The mass-spring damper model is described in Section 6.4.1 with noise
parameters Q𝑛 = 0.012 and R𝑖𝑖 = R𝑖𝑗 = 0.052.
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6.5 Conclusion
In this chapter, we have proposed a novel Kalman filter decoupling paradigm denoted as
Isolated Kalman Filtering (IKF), which paves the way to address large and complex esti-
mation problems in an efficient and distributed fashion. We have theoretically justified that
the decoupling between participants and non-participants in isolated joint observations is
based on an implicit maximum determinant completion, that leads stable decoupled esti-
mates under certain conditions. In case of pure relative updates and therefore an unob-
servable system, the decoupled estimates in cyclic or complete observation graphs become
inconsistent (overly optimistic), due to a fictive information flow. Star-based or connected
relative observation graphs lead to stable, but pessimistic, steady-state covariances. If the
system is fully observable and controllable, any relative observation graph leads to stable
steady-state covariances. Based on empirical insights, we believe the following conjecture
to be true:

Conjecture 1 The IKF paradigm leads to a finite, unique, and stable steady-state co-
variance Σ∞

𝑖𝑘𝑓 if the system is completely observable and controllable. The global matrix is
not necessary positive semidefinite, while stacked block matrices relating to output-coupled
instances are.

In a Monte Carlo simulation on a linear toy example, we manifest the analysis and
highlight the superiority over a naive implementation, while still performing considerably
well compared to an exact Kalman filter formulation.

The IKF paradigm allows to decouple the inputs and to couple the outputs of dynamic
systems isolated, if the coupled systems fulfill certain criteria (see Section 6.2). Due to the
isolated output coupling, corrections are not obtained by correlated but non-participating
nodes, which prevents, e.g., sensor self-calibration (see Section 5.3). Hidden variables, e.g.,
intrinsic or extrinsic sensor states, that are observable by the system configuration in
an exact filter formulation, might not be rendered observable or just partially observable
using the IKF paradigm. This might reduce the overall accuracy and state convergence. As
similar discussion can be found in [138], regarding tightly and loosely coupled estimators.
Consequently, the observability properties can only be guaranteed among the output-
coupled estimator nodes, as the participants are not aware of non-participants.

In our next chapter Chapter 7, an algorithm unifying CSE and MMSF based on IKF
is presented.
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Figure 6.13: Credibility analysis: Shows the ANEES in a logarithmic scale, the double-
sided 95 % confidence region (dotted lines), and expected ANEES value (dashed line) over
30 Monte Carlo simulation runs of the position 𝑝{1,4,5} (left column) and velocity 𝑣{1,4,5}
(right column) estimate of the first S1, forth S4, and fifth estimator S5 using a centralized
equivalent estimator (blue), the proposed Isolated Kalman filtering (IKF) paradigm (green),
and the naive filter (cyan). The experiment is described in Section 6.4.3.
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(a) Centralized equivalent estimator.

(b) IKF.

(c) Naive estimator.

Figure 6.14: Credibility analysis: Shows the estimation errors and the double-sided 99.7 %
confidence region (dotted lines) over 30 Monte Carlo simulation runs of the position p2 (left
column) and velocity v2 (right column) estimate of the second estimator S2. In the first row
using a centralized equivalent estimator, in the second row the proposed Isolated Kalman
filtering (IKF) paradigm, and in the last row the naive filter. The experiment is described
in Section 6.4.3.



Chapter 7

Distributed Collaborative Modular Sensor
Fusion

The objective of this chapter is to address two open issues in state-of-the-art filter-based
DCSE algorithms. First, to deal with changing dynamical systems of individual nodes/a-
gents in the swarm by, e.g., a time-varying/changing sensor constellation on an agent. For
instance, if the sensor-suite is changed during mission (change of propagation sensor in
case of hybrid vehicles, wheel encoder to an IMU or velocity sensor) or redundant sen-
sors are detected as faulty and are logically removed from the estimator. Second, to deal
with out-of-sequence measurements, which typically result from a (pre-) processing delay
between the moment sensor data was perceived until it reaches the filter update step in
the processing unit. We tackle these problems by a novel unified filter architecture for
modular and collaborative sensor fusion based on the IKF paradigm (see Chapter 6) and
provide a detailed pseudocode. In Monte Carlo simulations, we evaluate the filter credibil-
ity and analyzed the execution time with increasing sensor latency and increasing number
of sensors.

7.1 Introduction
In this chapter, we investigate on a unified distributed EKF algorithm for both MMSF and
CSE, which typically has been addressed in literature separately. In fact, our IKF paradigm
described in Chapter 6, allows us to treat physical sensors as isolated estimator instances
(e.g., mounted on an agent or distributed in the area of interest). This abstraction allows
us to not only perform state estimation on agents truly modular, but also to perform
inter-agent observations efficiently, requiring only the subset of directly involved estimator
instances.

Challenges of modular sensor fusion are the handling of different sensor rates, delays,
failure detection, self-calibration, as well as true modularity that ensures robustness against
a single point of failure, e.g., due to redundancy. These requirements impose tremendous
challenges regarding the increasing computation as well as the architectural complexity of
the fusion framework.

At the same time, from our Definition 1, CSE aims to enable the agents’ estimators
to work together to achieve a common task or goal. Collaboratively estimating states
or performing jointly observations can significantly improve an individual’s estimates,
but abrogates the statistical independence of the involved estimators, which need to be
considered and properly treated in order to obtain consistent estimates.

Rendering CSE exact can (i) significantly improve the estimation performance of indi-
vidual agents, (ii) provide redundancy in case of sensor failures, jamming or spoofing, and

165
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(iii) enable agents with less accurate sensors to benefit from agents with more accurate
ones [109, 122]. Therefore, it is often used in the field of CL.

Rendering CSE distributed on agents is challenging as it can degrade the performance,
lead to inconsistent estimates, requires extensive bookkeeping, communication, or/and
requires high computation if done naively.

To the best of our knowledge, delayed collaborative measurements in centralized or dis-
tributed CSE have not been addressed yet and impose another dimension of complexity.
As collaborative measurements tend to be more time-consuming than processing sensor
data on-board locally (due to the involvement of other agents each with multiple sensors),
a delay with respect to other sensors and/or agents is a crucial aspect to be properly con-
sidered. Whilst handling this consistently in a centralized fusion entity is straightforward
(yet with high computation demand), it imposes additional challenges and constraints in
a distributed setup.

Truly modular estimators allow for adding or removing sensors during operation lead-
ing to shrinking or growing full states of individual agents, meaning that the correlation
between agents change (thus the vector and matrix dimensions), in the worst case, be-
tween two consecutive inter-agent observations. To the best of our knowledge, existing
centralized or distributed CSE algorithms do not explicitly focus on this circumstance.

An estimation problem consisting of various heterogeneous agents with versatile sensor
suites that jointly observe each other or jointly observing object of interests, imposes a
tremendous challenge for existing filter-based approaches. In our experiments, we show
that the here proposed DC-MMSF algorithm outperforms other fusion strategies we ported
from existing CSE formulations regarding scalability and timing, while keeping up with
the accuracy and credibility of centralized-equivalent architectures. The algorithm unifies
and extends our recent publications in the domain of CSE [76] and MMSF [74], and builds
upon a novel and stable Kalman filter decoupling strategy denoted as IKF (see Chapter 6).

More precisely, our contributions are:
• Proposing a unified filter architecture for MMSF and CSE based on IKF that sup-

ports delayed measurements and the maintenance effort for each estimator instance
is invariant to the number of correlated sensors (𝒪(1)).

• Providing detailed pseudocode for our proposed DC-MMSF approach.
• A nonlinear observability analysis on three different multi-agent ranging scenarios.
• An evaluation on real data for a swarm of five collaborating agents with synthetic

but realistic inter-agent measurements.
The chapter is structured as follows. In Section 7.2 and in Section 7.3, the motivation

and combining of CSE and MMSF is described, respectively. In Section 7.4, the algorithm
is proposed. In Section 7.5, we describe the simulation framework and sensor models of
an indoor navigation problem with real and augmented data, which is evaluated in terms
of estimator credibility and by performing a timing analysis. Finally, we conclude the
algorithm in Section 7.6.

7.2 Motivation

We assume a time-varying set of communicating agents A := {A𝑖| 𝑖 = 1, . . . ,𝑀} and
a time-varying set of estimator instances per agent. The set of all sensor instances is
defined as S := {S𝑖| 𝑖 = 1, . . . , 𝑁} = {S𝑖| 𝑖 = 1, . . . , |A|}. In modular sensor fusion, each
sensor related state xS𝑖

needs to be regarded as part of the global full state x. Since the
global full state is potentially distributed among multiple agents, which can further be
dividing into various sensor specific states, it is desirable to reduce the communication
and computation effort whenever possible. In a centralized filter, which typically operates



7. Distributed Collaborative Modular Sensor Fusion 167

on the full state, the entire state and the joint covariance matrix are needed in each filter
step. It is known that the processing time of a naive estimator increases cubically 𝒪(𝐿3)
with the state vector length 𝐿 and additionally linearly with the update rate of non-
delayed sensor measurements. On top of that, delayed sensor updates and the handling of
the interim sensor observations will result in additional processing time, depending on the
strategy used. With an increasing amount of sensors, the effective measurement rate and
the amount of delayed measurements increases.

To overcome this burden, we propose the use our Kalman filter decoupling strategy,
which we denote as Isolated Kalman Filtering (IKF), that allows isolated filter steps and
to restore interdependencies between estimators/nodes when needed. Due to isolated filter
steps, where only a subset of decoupled estimators are required, we are distinguishing
between participating (𝑝) S𝑝 := {S𝑖| 𝑖 ∈ P} and non-participating (others 𝑜) S𝑜 := {S𝑖| 𝑖 ∈
P̄} estimators, see Equation (6.1f) and Equation (6.1g), respectively. Further, we can
differentiate between participants’ and non-participants’ beliefs, resulting in a stacked
random variable x =

[︁
x𝑝; x𝑜

]︁
. x𝑝 is a joint belief of participants, e.g., consisting of S𝑖’s

and S𝑗 ’s belief x𝑝 =
[︁
x𝑖; x𝑗

]︁
, and a joint belief of non-partipants x𝑜.

7.3 Unifying CSE and MMSF

In this chapter, we extend our MMSF-DAH (see Chapter 4) approach to support CSE,
denoted as the DC-MMSF approach. As a consequence, CSE can be performed distributed
among agents, while (i) communication between agents is only required at the moment
of inter-agent joint observations, (ii) one agent acts as interim master to process the
isolated state correction (see Section 6.3.3) on the participants’ stacked belief, (iii) agents
can be added and removed from the swarm, while removed ones will still cause a slight
maintenance overhead in the correlated ones, but will be able to join the swarm later again,
(iv) each agent’s local full state can vary during mission, meaning that each local sensor
suite can be truly modular, and (v) delayed and multi-rate sensor updates are supported
(see Section 6.3.4). The ability of (iv) and (v) are clear contributions with respect to CSE
that have not been in focus of recent works of, e.g., [73, 76, 80, 95, 121].

As a consequence of inter-agent joint observations, an agent’s local sensor suite will
be correlated to other agents’ sensor suites. A key concept is to maintain correlations
between local estimator instances – the sensor specific IKF instances – on a single agent
equal to correlations between agents’ estimator instances. The only differences are the
availability and accessibility of the required information in case of inter-agent (global)
joint observations and that delayed measurements might lead to reapplying measurements
on multiple agents. That said, although being different in view of the implementation,
conceptually, no differences are made with respect to the local estimator instances.

Figure 7.1 depicts a block diagram of main components of the proposed DC-MMSF
approach, showing a clear abstraction between agents and the estimator instances (nodes).
That allows us to propose a unified estimator architecture to support both, MMSF and
CSE seamlessly and is one major difference to existing filter-based fusion architectures,
e.g., [18, 46, 58, 96, 150].

By using a correction buffer per estimator instance, originating from [76] and explained
in more detail in Section 6.3.1, the maintenance effort for correlations between estimator
instances (locally or globally) in the propagation step can be reduced to 𝒪(1), and thus,
can be shifted to the moment when correlations are required again. This concept renders
DC-MMSF (i) ideal for high prediction rates, as it is typically the case for an ESEKF
based on IMU propagation, (ii) capable of performing any-sensor to any-sensor observa-
tions and private observations, (iii) capable of re-applying updates faster after delayed
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Figure 7.1: DC-MMSF: Shows the modular multi-sensor fusion framework of individual
agents, consisting of a collaborative instance handler HA, held in blue, maintaining various
IKF instances S, held in yellow, for a specific sensor type. The sensor suite provides measure-
ments to the HA, which again delegates them to the appropriate estimator instance S, which
performs the isolated filter steps. The HA has logically access to the measurement-, belief-,
factorized cross-covariance, and correction history (𝒵HA

, 𝒳 HA
, 𝒞HA

, and ℬHA
, respectively),

held in orange, of the entire sensor constellation. For inter-agent joint observation, informa-
tion exchange between collaborative instance handlers of participants HA𝑖, 𝑖 ∈ P, is needed.
Therefore, a lookup table ℒHA

associating sensor instances with agents is maintained. Details
are provided in Section 7.4.

(out-of-order) measurements, (iv) having minimal overhead for maintaining temporally
disabled estimator instances or sporadic inter-agent joint observations, and (v) requiring
communication only among participating agents during the event of processing inter-agent
joint observations1.

7.4 The DC-MMSF Algorithm
In this section, the architecture of a local fusion entity, the Collaborative Instance Handler
HA (see Section 7.4.1), to unify 𝑁 locally or globally held IKF instances S is proposed and
depicted in Figure 7.1. This architecture allows us to do both, perform modular multi-
sensor fusion on an agent and collaboratively among distributed agents, thus, it is denoted
as Distributed Collaborative Modular Multi-Sensor Fusion (DC-MMSF).

As previously defined, local refers to estimator instances associated to (rigidly) attached
sensors on an individual agent, while global specifies the estimator instances maintained
on the other agents, meaning that they are not directly accessible and communication is
required in order to exchange desired information2. An agent A𝑖 has a unique identifier
idA𝑖

and is an element of a time-varying group of agents A with computational and range
limited communication capabilities.

1The amount of communication links scales in the number of agents involved 𝑛 with 𝒪(𝑛). The informa-
tion to be exchanged depends on the number of involved estimator instances 𝑚, on the data representation,
and on each estimator instances’ state vector length 𝑣𝑖, which scales with 𝒪(𝑣2) with 𝑣 =

∑︀𝑚
𝑖=1 𝑣𝑖 as par-

titions of the joint belief of participants need to be exchanged.
2This implies that local estimator instances can be efficiently accessed by inter-process communication

or directly by sharing the same memory within the same process.
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7.4.1 Collaborative Instance Handler
Each agent A𝑖 holds in its handler HA𝑖 a varying set of IKF instances S in a dictionary
ℳHA𝑖

:= Dict{idS𝑖
, S𝑖}

3. The elements are accessed via a unique sensor identifier idS that is
associated to a physically real sensor of the agent’s sensor suite. The sensors are of a specific
and known type, e.g., an IMU, barometer, magnetometer, GNSS sensor, etc. and allows
instantiating sensor specific estimator instances. The handler maintains a lookup table
ℒHA𝑖

:= Dict{idS𝑖
, idA𝑖

} for associating unique sensor identifiers with unique identifiers
for agents. This table is updated and used at the moment of global/inter-agent joint
observation, where local IKF instances require data from an IKF instance maintained on
other agents via (wireless network) communication. All (local) sensors measurements are
delegated to the instance handler HA𝑖, which further delegates them to the appropriate
estimator instance (see Algorithm 7.1). In case of local joint observations, information
exchange between local instances can be handled locally via the handler HA𝑖, i.e. the
memory can be directly accessed through pointers within a common process.

As described in Section 6.2, each estimator instance S𝑖 maintains a history of recent
beliefs 𝒳 S𝑖

, a dictionary 𝒞S𝑖
with histories of factorized cross-covariances 𝒮 relating to

other estimator instances, a history of recent corrections terms ℬS𝑖
, a history or recent

measurements 𝒵S𝑖
, a unique identifier idS𝑖

, and a reference to the local instance handler
HA𝑖, in order to request access to other local or global IKF instances to perform isolated
joint observations. If the requested IKF instance is not locally available, i.e. not maintained
in HA𝑖, then the HA𝑖 performs a lookup in the ℒHA𝑖

. If the requested IKF instance was
not found, the agent requests a list of sensor identifiers from agents in communication
range. If the identifier cannot be found, the inter-agent joint observation is not performed.
Otherwise, the HA𝑖 request from the associated agent the required information as described
in Section 7.4.4.

A sensor measurement is defined as a set M𝑘 := {𝑡𝑘,Type, idS𝑖
, z𝑘,R𝑘}, with a times-

tamp 𝑡𝑘 of the measurement z𝑘, the measurement uncertainty R𝑘, the measurement type
Type, and the sensor identifier idS . Each estimator instance can, based on the measure-
ment type Type, issue the appropriate measurement method which leads to an isolated
filter step (see Algorithm 7.4). In case of inter-agent joint observation, the measurement
type needs to encode the agent association.

Each HA𝑖 maintains a history of (chronologically sorted) recent measurements in the
𝒵HA𝑖

buffer for compensating delayed, i.e. out-of-order measurements within the handler. If
the measurement is not rejected from the NIS-based hypothesis check (Algorithm 7.6), all
elements (beliefs, cross-covariance factors, correction terms) after the measurement event
are deleted from all local buffers and all interim measurements are re-applied in order
to properly re-compute the deleted elements. If any interim measurements are related to
another agent and if it was not rejected, then all known agents will be notified, if in
range, to re-apply their measurements after the delayed one (see Algorithm 7.3). Certainly,
this is computational-wise suboptimal, as only a subset of known agents might be post-
correlated, but simplifies the algorithm (ideally, only post-correlated agents are notified).
Otherwise, redoing measurements among participants only, might lead to dangling cross-
covariance factors as described in Section 6.3.4. Figure 7.2 underlines, that an interim
global joint observations H3

5,3 with a non-participating agent needs to be reprocessed as
well. Finally, the new measurement is inserted chronologically sorted into the agent’s buffer
𝒵HA𝑖

Summarized, a handler HA𝑖 maintains a dictionary of estimator instance ℳHA𝑖
and a

sliding time horizon buffer of recent measurements 𝒵HA𝑖
. Via the dictionary ℳHA𝑖

, the
3Careful reader will notice that in MMSF-DAH (see Section 4.3), we called the handler Instance Handler.

The collaborative handler is a specialization of the instance handler and is capable of handling inter-agent
communication requests.
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t1 2 3 4 50

Figure 7.2: Shows the measurement graph of six instances {S1,...,6} maintained on three
agents {A1,2,3}. Arrows in orange are predictions, e.g., due to control inputs u. Local private
observations are held in red, local joint observations in purple, and global (inter-agent) joint
observations in blue. The global joint observation at 𝑡 = 5 held in magenta indicates a
delayed measurement H1

2,3 originating from 𝑡 = 1. In order to restore the beliefs at 𝑡 = 5, all
intermediate measurements after that event (within the gray boxes) need to be reprocessed
in an appropriate order. Obviously, A2 needs to trigger A3 to re-apply the global joint
observation H3

5,3 at 𝑡 = 3.

handler has logically access to the history of all local (i) beliefs 𝒳 HA𝑖
, (ii) correction terms

ℬHA𝑖
, and (iii) cross-covariance factors 𝒞HA𝑖

, as depict in Figure 7.1.

7.4.2 Time Horizon
To reduce the memory footprint, it is desirable to have a fixed time horizon for the buffers,
which leads to the challenge that required information can fall out of the time horizon of
the history, as discussed in Section 6.3.1. As the time horizon of the correction buffer ℬS is
finite, we forward-propagate factorized cross-covariances 𝒮, if they are about to fall outside
that time horizon (see Algorithm 7.11). For example, if correlated estimator instances are
not performing joint observations for a duration longer than the time horizon of 𝒞S. There-
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fore, the horizon has to be checked periodically in propagation steps of estimator instances
(see Algorithm 7.12). This ensures that the time horizon of the correction buffer ℬS is al-
ways adequately populated, while reducing the maintenance effort during the propagation
and private update steps compared to [95, 121]. The length of the correction buffer’s hori-
zon has an impact on when and where that propagation happens (either propagation or
joint observation step). In the limit of infinitely long time horizons, it always happens in
joint observation step (when it is actually required), with limited time horizons the buffer-
length check in the estimator’s propagation step may trigger such a forward-propagation
of factorized cross-covariances. A reasonable time horizon for all buffers on an agent would
be twice the maximal sensor latency of its sensors, since it would prevent a forced forward
propagation of cross-covariance factors in its estimator instances propagation step (if the
agent is not correlated to other agents’ estimator instances). In case of inter-agent cor-
relations, it is likely that agents are not having a rendezvous for a longer period of time
or just sporadically throughout the mission. Therefore, the agent’s buffer horizons should
be adjusted primarily to the local sensor configuration, and it should be expected that
inter-agent cross-covariance factors 𝒮 will be forcibly forward propagated.

7.4.3 Interim Master
In joint observations, the instance S𝑖 ∈ A𝑖 that obtained the measurement acts as interim
master. It has to (i) stack the joint belief by requesting the beliefs and cross-covariance
factors 𝒮 of all participants S𝑝, (ii) to compute the measurement Jacobian H𝑝, (iii) to per-
form the NIS hypothesis check in order to detect measurement outliers (see Algorithm 7.6),
(iv) to compute the stacked state correction Δx̂𝑘(+)

𝑝 and the a-posteriori joint covariance
Σ𝑘(+)

𝑝𝑝 , and (v) to split and send the appropriate parts to the participants. Each individ-
ual participant then (i) corrects the a-priori estimate with the correction obtained, (ii)
computes the correction factor Λ and adds it to the correction buffer ℬS, (iii) factorizes
the cross-covariances to other participants and inserts them in the dictionary 𝒞S, and (iv)
inserts the corrected belief into 𝒳 S. Details are shown in Algorithm 7.14. Without loss
of generality, the inter-agent bi-joint observation (see Algorithm 7.14) can be extended to
support an arbitrary number of other agents’ estimator instances.

7.4.4 Communication
Isolated propagation (see Algorithm 7.12), private observation (see Algorithm 7.9), and
local joint observations steps require no inter-agent communication, since all information
is directly accessible via the local handler HA. Isolated inter-agent joint observation require
an information exchange with estimator instances maintained on different agents.

In joint observations, the interim master requires information from participating esti-
mator instances. The local handler HA𝑖, knows according to the sensor identifier idS𝑜

, if
the requested information is (locally) maintained in ℳHA𝑖

. If the instance is not avail-
able locally, the information must be obtained from the appropriate agent, by a lookup
in idA𝑝

= ℒHA𝑖
(idS𝑜

) (see Algorithm 7.5). This dictionary needs to be kept up to date,
i.e. agents need to refresh it by requesting a list of estimator identifiers from agents in
communication range (see Algorithm 7.2), e.g., whenever an entry was not found. If an
observation was delayed, then all interim measurements have to be applied in the correct
order (processed again). In case of joint inter-agent observations, all measurements from
post-correlated instances need to be re-processed in order, as discussed in Section 6.3.4.

In total, the collaborative instance handler needs to support two blocking (synchronous)
requests and two asynchronous messages. One blocking request is needed to obtain the
list of unique estimator identifiers from other agents. In the worst case, the message would
contain |S| elements or if a list is requested from |A| agents, |S| elements are sent to the
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requesting agent. The second blocking request is needed to obtain the participating estima-
tor instance’s S𝑜 a-priori belief (mean and covariance) and all factorized cross-covariances
to other participants 𝒮𝑜𝑝 := {𝒮𝑜𝑖, 𝑖 ∈ P}, with P being the set of participants. The message
size is 𝑚(1 +𝑚+𝑚|P|) elements, where |P| ≤ |A|. An asynchronous (non-blocking) mes-
sage is required to update the a-posteriori covariance and factorized cross-covariances to
participating estimators, and a state correction. The size of this message is 𝑚(1+𝑚+𝑚|P|)
elements (see Algorithm 7.14). The second asynchronous message is needed to inform an-
other agent to reprocess measurements after a specific timestamp, requiring only a single
element in the message, see Algorithm 7.3.

In summary, the elements described above for our DC-MMSF approach allow a delay-
compensated overarching framework seamlessly merging collaborative decentralized state
estimation with modular multi-sensor fusion under a single umbrella of IKF.

7.4.5 Algorithm

Algorithm 7.1: DC-MMSF:HA𝑖: new sensor observation
Input : {𝒳 ,𝒞,ℬ,ℳ,𝒵}HA𝑖

,M
1 {𝑡𝑘, idS𝑖

, z𝑘
S𝑖
,R𝑘

S𝑖
,Type} = M

2 S𝑖 = ℳHA𝑖
(idS𝑖

)
3 /* process measurement as sensor specific observation * /
4 /* e.g. propagation, private, joint (bi, tri, quad, ...) */
5 rejected = S𝑖 → process_sensor_measurement(M) (Alg. 7.4)
6 if !rejected then
7 redo_updates_after_t({𝒳 ,𝒞,ℬ,ℳ,𝒵}HA𝑖

, 𝑡𝑘) (Alg. 7.3)
8 end
9 𝒵(𝑡𝑘) = M // store sensor measurement

Algorithm 7.2: DC-MMSF:HA𝑖: referesh_lookup_table
Input : HA𝑖

Output: ℒ
1 ℒ = {}
2 for A𝑜 ∈ A in communication range do
3 /* request a list of unique estimator identifiers from agent A𝑜 */
4 receive from A𝑜: {l𝑜 = HA𝑜 →ℳHA𝑜

→ keys()}
5 ℒ(l𝑜) = idA𝑜

6 end
7 /* update local dictionary */
8 HA𝑖 → ℒHA𝑜

= ℒ
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Algorithm 7.3: DC-MMSF: HA𝑖: redo_updates_after_t
Input : {𝒳 ,𝒞,ℬ,ℳ,𝒵}HA𝑖, 𝑡

𝑘

1 /* delete newer corrections, cross-cov and states! */
2 delete({𝒳 HA𝑖,𝒞HA𝑖,ℬHA𝑖} > 𝑡𝑘)
3 /* redo existing observation after 𝑡𝑘! */
4 for M𝑖 in {sort(𝒵HA𝑖

) > 𝑡𝑘} do
5 {𝑡𝑖, idS𝑙

, z𝑖
S𝑙
,R𝑖

S𝑙
,Type} = M𝑖

6 S𝑙 = ℳHA𝑖
(idS𝑙

)
7 {rejected𝑖,P} = S𝑙 → process_sensor_measurement(M𝑖) (Alg. 7.4)
8 if not rejected𝑖 then
9 /* simplification made: redo existing observation after 𝑡𝑖 asynchronously on all

known agents instead of post-correlated ones */
10 /* assuming that ℒHA𝑖

is up to date: */
11 for A𝑜 ∈ ℒHA𝑖

do
12 send an asynchronous request to A𝑜: redo_updates_after_t, 𝑡𝑖
13 end
14 end
15 end

Algorithm 7.4: DC-MMSF: S𝑖: process_sensor_measurement
Input : {𝒳 ,𝒞,ℬ, id}S𝑖

,M
Output: rejected,P

1 P = {}
2 /* Sensor estimator type specific methods ... */
3 {𝑡𝑘, idS𝑖

, z𝑘
S𝑖
,R𝑘

S𝑖
,Type} = M

4 if Type ≡ proprioceptive or control then
5 propagate(. . .) (Alg. 7.12)
6 else if Type ≡ private then
7 rejected = private_observation(. . .) (Alg. 7.9)
8 else if Type ≡ joint_observation then
9 if Type ≡ inter-agent bi-observation then

10 {rejected,P} = global_joint_observation(. . .) (E.g, Alg. 7.14)
11 else
12 {rejected,P} = local_joint_observation(. . .)
13 end
14 else
15 rejected = True
16 end
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Algorithm 7.5: DC-MMSF: HA𝑖 : get_others_belief
Input : ℳHA𝑖

,ℒHA𝑖
,Type, idS𝑜

, idS𝑝
, 𝑡𝑘

Output: exists,x𝑘
𝑜 ,𝒮𝑜𝑝 := Dict{idS ,𝒮}

1 exist = True
2 if idS𝑜

∈ℳHA𝑖
then

3 /* obtain information from a local estimator instance */
4 S𝑜 = ℳHA𝑖

(idS𝑜
)

5 x𝑘
𝑜 = get_belief(S𝑜, 𝑡

𝑘)
6 𝒮𝑜𝑝 = get_cross_factors(S𝑜, idS𝑝

, 𝑡𝑘) (Alg. 7.10)
7 else
8 /* obtain information from a remote estimator instance */
9 /* assuming that ℒHA𝑖

is not up to date: */
10 refresh_lookup_table() (Alg. 7.2)
11 idA𝑗

= ℒHA𝑖
(idS𝑜

)
12 request from A𝑗 : {x𝑘

𝑜 ,𝒮𝑜𝑝, exist} providing:{idS𝑝
, 𝑡𝑘} (Alg. 7.5)

13 end

Algorithm 7.6: DC-MMSF: check_NIS
Input : r,S, 𝑝 = 0.997
Output: outlier

1 𝑠 = rTS−1r // Mahalanobis distance squared
2 DoF = length(r) (Degrees of freedom)
3 /* Inverse of the chi-square cumulative distribution */
4 outlier = (𝑠 > chi2inv(𝑝,DoF))

Algorithm 7.7: DC-MMSF:S𝑖: get_belief
Input : 𝒳 S𝑖

, 𝑡𝑘

Output: x𝑘
𝑖

1 if not exist(𝒳 S𝑖
(𝑡𝑘) then

2 {x̂𝑎
𝑖 ,Σ

𝑎
𝑖𝑖, 𝑡

𝑎} = max(find(𝒳 S𝑖
< 𝑡𝑘))

3 /* predict from previous state to current timestamp */
4 x𝑘

𝑖 = propagate𝑖(. . . , 𝑡
𝑎, 𝑡𝑘) (Alg. 7.12)

5 else
6 {x̂𝑘

𝑖 ,Σ
𝑘
𝑖𝑖} = x𝑘

𝑖 = 𝒳 S𝑖
(𝑡𝑘)

7 end

Algorithm 7.8: DC-MMSF:S𝑖: compute_correction
Input : ℬS𝑖

, 𝑡𝑎, 𝑡𝑘

Output: M𝑘|𝑎
𝑖𝑖

1 M𝑘|𝑎
𝑖𝑖 = I

2 𝑡𝑏 = min(ℬS𝑖
> 𝑡𝑎)(

3 for 𝑙← 𝑡𝑏 to 𝑡𝑘 do
4 M𝑘|𝑎

𝑖𝑖 = ℬS𝑖
(𝑙)M𝑘|𝑎

𝑖𝑖

5 end
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Algorithm 7.9: DC-MMSF:S𝑖 : private_observation
Input : {{𝒳 ,𝒞,ℬ, id}S𝑖

, 𝑡𝑘, z𝑘,R𝑘

Output: {𝒳 ,𝒞,ℬ, id}S𝑖
, rejected

1 /* get existing beliefs or predict beliefs */
2 x̂𝑘(−)

𝑖 ,Σ𝑘(−)
𝑖𝑖 = get_belief(𝒳 S𝑖

,ℬS𝑖
, 𝑡𝑘) (Alg. 7.7)

3 H𝑘 =
[︂

𝜕ℎ(xS𝑖
)

𝜕xS𝑖

⃒⃒⃒⃒
x̂𝑖

]︂𝑘(−)

4 S𝑘 = H𝑘Σ𝑘(−)
𝑖𝑖

(︁
H𝑘
)︁T

+ R𝑘

5 K𝑘 = Σ𝑘(−)
𝑖𝑖

(︁
H𝑘
)︁T

(S𝑘)−1

6 r = �ℎ(x̂𝑘(−)
𝑖 )� z𝑘

7 rejected = check_NIS(r,S𝑘) (Alg. 7.6)
8 if not rejected then
9 x̂𝑘(+)

𝑖 = x̂𝑘(−)
S𝑖
�K𝑘r

10 Σ𝑘(+)
𝑖𝑖 = (I−K𝑘H𝑘)Σ𝑘(−)

𝑖𝑖

11 ϒ𝑘
𝑖𝑖 = Σ𝑘(+)

𝑖𝑖

(︁
Σ𝑘(−)

𝑖𝑖

)︁−1

12 ℬS𝑖

(︁
𝑡𝑘
)︁

= ϒ𝑘
𝑖𝑖ℬS𝑖

(︁
𝑡𝑘
)︁

13 𝒳 S𝑖
(𝑡𝑘) = {x̂𝑘(+)

S𝑖
,Σ𝑘(+)

𝑖𝑖 }
14 end

Algorithm 7.10: DC-MMSF:S𝑖: get_cross_factors
Input : 𝒞S𝑖

,ℬS𝑖
, idS𝑜

, 𝑡𝑘

Output: 𝒮𝑖𝑜 := Dict{idS ,𝒮}
1 for {id𝑜} in idS𝑜

do
2 if id𝑜 ∈ 𝒞𝑖 then
3 𝒮𝑖𝑜(id𝑜) = get_cross_cov_factor(𝒞S𝑖

,ℬS𝑖
, id𝑜, 𝑡

𝑘) (Alg. 7.13)
4 end
5 end

Algorithm 7.11: DC-MMSF:S𝑖: check_horizon
Input : ℬS𝑖

,𝒞S𝑖
, 𝑡𝑘

1 𝑡o = min(find(ℬS𝑖
< 𝑡𝑘)) (oldest correction term)

2 𝑡𝑚 = 𝑡o + (𝑡𝑘 − 𝑡o)/2 (half of the time horizon)
3 for {idS𝑗

} in 𝒞S𝑖
do

4 if find(𝒞(idS𝑗
)) ≡ 𝑡o then

5 M𝑚|o
𝑖𝑖 = compute_corr(ℬS𝑖

, 𝑡𝑜, 𝑡𝑚) (Alg. 7.8)
6 𝒮𝑜(−)

𝑖𝑗 = 𝒞S𝑖
(idS𝑗

)(𝑡o)
7 𝒞S𝑖

(idS𝑗
) = {M𝑚|o

𝑖𝑖 𝒮
𝑜(−)
𝑖𝑗 , 𝑡𝑘} (forward prop.)

8 end
9 end
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Algorithm 7.12: DC-MMSF:S𝑖: Propagation
Input : {ℬ,𝒞,𝒳}S𝑖

,u𝑘,N𝑘
𝑖𝑖, 𝑡

𝑘−1, 𝑡𝑘

Output: x̂𝑘
𝑖 ,Σ

𝑘
𝑖𝑖, {𝒳 ,ℬ}S𝑖

1 {x̂𝑘−1
𝑖 ,Σ𝑘−1

𝑖𝑖 } = 𝒳 S𝑖
(𝑡𝑘−1)

2 Φ𝑘|𝑘−1
𝑖𝑖 =

[︂
𝜕𝜑𝑖(x𝑝,u)

𝜕x𝑝

⃒⃒⃒⃒
x̂𝑖,u

]︂𝑘|𝑘−1

3 G𝑘|𝑘−1
𝑖𝑖 =

[︁
𝜕𝜑𝑖(x𝑝,u)

𝜕u

⃒⃒
x̂𝑖,u

]︁𝑘|𝑘−1

4 Q𝑘|𝑘−1
𝑖𝑖 = G𝑘|𝑘−1

𝑖𝑖 N𝑘
𝑖𝑖(G

𝑘|𝑘−1
𝑖𝑖 )T

5 x̂𝑘
𝑖 = 𝜑𝑖(x̂

𝑘−1
𝑖 ,u𝑘)

6 Σ𝑘
𝑖𝑖 = Φ𝑘|𝑘−1

𝑖𝑖 Σ𝑘−1
𝑖𝑖 (Φ𝑘|𝑘−1

𝑖𝑖 )T + Q𝑘|𝑘−1
𝑖𝑖

7 ℬS𝑖

(︁
𝑡𝑘
)︁

= Φ𝑘|𝑘−1
𝑖𝑖 // insert into sorted buffer

8 𝒳 S𝑖
(𝑡𝑘) = {x̂𝑘

𝑖 ,Σ
𝑘
𝑖𝑖} // insert belief sorted

9 check_horizon(ℬS𝑖
,𝒞S𝑖

, 𝑡𝑘) (Alg. 7.11)

Algorithm 7.13: DC-MMSF:S𝑖: get_cross_cov_factor
Input : 𝒞S𝑖

,ℬS𝑖
, idS𝑜

, 𝑡𝑘

Output: 𝒮𝑘
𝑖𝑜

1 if idS𝑜
∈ 𝒞𝑖 then

2 if not exist(𝒞S𝑖
(idS𝑜

, 𝑡𝑘)) then
3 /* get the latest factor and forward propagate it */
4 {𝒮𝑚

𝑖𝑜 , 𝑡
𝑚} = max(find(𝒞S𝑖

(idS𝑜
) < 𝑡𝑘))

5 M𝑘|𝑚 = compute_corr(ℬS𝑖
, 𝑡𝑚, 𝑡𝑘) (Alg. 7.8)

6 𝒮𝑘
𝑖𝑜 = M𝑘|𝑚𝒮𝑚

𝑖𝑜

7 𝒞S𝑖
(idS𝑜

, 𝑡𝑘) = 𝒮𝑘
𝑖𝑜

8 else
9 𝒮𝑘

𝑖𝑜 = 𝒞S𝑖
(idS𝑜

, 𝑡𝑘)
10 end
11 end
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Algorithm 7.14: DC-MMSF:S{𝑚,𝑛}: Inter-Agent bi-sensor observation
Input : {𝒳 , 𝒞, ℬ, id}{S𝑚,S𝑛}, 𝑡

𝑘
, z𝑘

, R𝑘
, Type

Output: {𝒳 , 𝒞, ℬ, id}{S𝑚,S𝑛}, rejected, P
1 // Type: Agent A𝑖 detects A𝑗 , involving S𝑚 and S𝑛

2 P = {idA𝑗
} /* set of participating agents */

3 if S𝑚 ∈ A𝑖 observes S𝑛 ∈ A𝑗 at 𝑡
𝑘 then

4 /* Agent A𝑖 is interim master*/
5 {𝒮𝑚

S𝑚S𝑛
, 𝑡

𝑚} = max(find(𝒞S𝑚
(idS𝑛

) < 𝑡
𝑘))

6 x𝑚
S𝑚

= get_belief(𝒳 S𝑚
, ℬS𝑚

, 𝑡
𝑚) (Alg. 7.7)

7 M𝑘|𝑚
S𝑚

= compute_correction(ℬS𝑚
, 𝑡

𝑚
, 𝑡

𝑘) (Alg. 7.8)

8 𝒮𝑘
S𝑚S𝑛

= (M𝑘|𝑚
S𝑚

𝒮𝑚
S𝑚S𝑛

)

9 request from A𝑗 : {x𝑘
S𝑛

, 𝒮𝑘
S𝑛,S𝑚

} providing:{idS𝑚
, 𝑡

𝑘} (Alg. 7.5)
10 Σ𝑘

S𝑚S𝑛
= (𝒮𝑘

S𝑚S𝑛
)(𝒮𝑘

S𝑛S𝑚
)T

11 Σ𝑘(−)
𝑝𝑝 =

⎡⎣ ΣS𝑛
ΣS𝑛S𝑚

ΣT
S𝑛S𝑚

ΣS𝑚

⎤⎦𝑘

12 x̂𝑘(−)
𝑝 =

⎡⎣ x̂S𝑛

x̂S𝑚

⎤⎦𝑘

13 H𝑝 =
[︃

𝜕ℎ𝑚,𝑛(xS𝑛
,xS𝑚

)
𝜕xS𝑛

⃒⃒⃒⃒
x̂𝑘(−)

𝑝

𝜕ℎ𝑚,𝑛(xS𝑛
,xS𝑚

)
𝜕xS𝑚

⃒⃒⃒⃒
x̂𝑘(−)

𝑝

]︃
14 S𝑝 = H𝑝Σ𝑘(−)

𝑝𝑝 HT
𝑝 + R𝑘

15 r𝑝 = �ℎ𝑚,𝑛

(︁
x̂𝑘(−)

𝑝

)︁
� z

16 rejected = check_NIS(r, S𝑝) (Alg. 7.6)
17 if not rejected then
18 K𝑝 = Σ𝑘(−)

𝑝𝑝 HT
𝑝 (S𝑝)−1

19 Δx̂𝑘(+)
𝑝 = K𝑝r𝑝

20 Σ𝑘(+)
𝑝𝑝 = (I − K𝑝H𝑝)Σ𝑘(−)

𝑝𝑝

21 /* Note: split Σ𝑘(+)
𝑝𝑝 and Δx̂𝑘(+)

𝑝 */
22 send to A𝑗 : {Δx̂𝑘(+)

S𝑛
, Σ𝑘(+)

S𝑛
, 𝒮𝑘(+)

S𝑛,S𝑚
= I, False}

23 x̂𝑘(+)
S𝑚

= x̂𝑘(−)
S𝑚

�Δx̂𝑘(+)
S𝑚

24 𝒮𝑘(+)
S𝑚S𝑛

= Σ𝑘(+)
S𝑚S𝑛

25 Λ𝑘
S𝑚

= Σ𝑘(+)
S𝑚

(Σ𝑘(−)
S𝑚

)−1

26 ℬS𝑚
(𝑡𝑘) = Λ𝑘

S𝑚
ℬS𝑚

(𝑡𝑘)
27 𝒞S𝑚

(idS𝑛
) = {𝒮𝑘(+)

S𝑚S𝑛
, 𝑡

𝑘}

28 𝒳 S𝑚
(𝑡𝑘) = {x̂𝑘(+)

S𝑚
, Σ𝑘(+)

S𝑚
}

29 else
30 send to A𝑗 : rejected
31 end
32 else
33 /* get previous cross-covariance factors (Alg. 7.10)*/
34 {𝒮𝑚

S𝑛S𝑚
, 𝑡

𝑚} = max(find(𝒞S𝑛
(idS𝑚

) < 𝑡
𝑘))

35 /* get existing beliefs or predict beliefs */
36 x𝑚

S𝑛
= get_belief(𝒳 S𝑛

, ℬS𝑛
, 𝑡

𝑚) (Alg. 7.7)
37 M𝑘|𝑚

S𝑛
= compute_correction(ℬS𝑛

, 𝑡
𝑚

, 𝑡
𝑘) (Alg. 7.8)

38 𝒮𝑘
S𝑛S𝑚

= (M𝑘|𝑚
S𝑛

𝒮𝑚
S𝑛S𝑚

)

39 send to A𝑖: {x𝑘
S𝑛

, 𝒮𝑘
S𝑛,S𝑚

}
40 wait and receive from A𝑖: {Δx̂𝑘(+)

S𝑛
, Σ𝑘(+)

S𝑛
, 𝒮𝑘(+)

S𝑛S𝑚
, not rejected} or {rejected}

41 if not rejected then
42 x̂𝑘(+)

S𝑛
= x̂𝑘(−)

S𝑛
�Δx̂𝑘(+)

S𝑛

43 Λ𝑘
S𝑛

= Σ𝑘(+)
S𝑛

(Σ𝑘(−)
S𝑛

)−1

44 ℬS𝑛
(𝑡𝑘) = Λ𝑘

S𝑛
ℬS𝑛

(𝑡𝑘)
45 𝒞S𝑛

(idS𝑚
) = {𝒮𝑘(+)

S𝑛S𝑚
, 𝑡

𝑘}

46 𝒳 S𝑛
(𝑡𝑘) = {x̂𝑘(+)

S𝑛
, Σ𝑘(+)

S𝑛
}

47 end
48 end
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7.5 Evaluations
To evaluate the performance of DC-MMSF, we conducted experiments with our custom
MATLAB framework, that allows to load real data from the EuRoC dataset [20] or to
generate a dataset based on a synthetic trajectory. Exteroceptive measurements (private
or joint observations) are generated based on the ground truth trajectory and are modified
by the sensors’ calibration states and noise parameters. Noisy and biased real-world IMU
samples are provided by the datasets and used without modifications. This simulation
environment ensures deterministic and repeatable results, and allows changing the sensor
latency 𝑡lat of all sensors, which is important for a fair comparison between different fusion
strategies and the ANEES evaluation.

Figure 7.3 depicts schematically how agents obtain their configurations and measure-
ments. Once the sensor suite is defined or loaded from a dataset, the measurements can
be processed in a multi-agent handler, which is again maintaining multiple handlers HA,
while communication between them is handled locally.

Therefore, an optimal communication is assumed (no latency, packet loss, bandwidth
limitations), as it would bias the evaluation of the processing time for different filter
steps between distributed and centralized approaches. In a centralized architecture, all
measurements would have to be streamed to a central fusion entity, resulting in even higher
sensor latency, which further increases the processing time. The evaluation is performed
single-threaded in MATLAB on an AMD Ryzen 7 3700X CPU with 32 GB DDR4 RAM.

The aim of the evaluation is twofold. In the first experiment S1, we compare the
filter accuracy and credibility of the proposed DC-MMSF approach against a centralized
equivalent estimator MDCSE-DP* and the MDCSE-DAH approach, which are described in
Section 7.5.1. In the second experiment S2 we compare the execution time of the proposed
approach against MDCSE-DAH.

Before the accuracy and credibility, and scalability are discussed in Sections 7.5.4
and 7.5.5, the sensor models and the state spaces are described in Section 7.5.2.

7.5.1 Architecture Overview
In the following evaluation we compare the filter accuracy and credibility of the proposed
DC-MMSF approach against a centralized equivalent estimator, DCSE-DP* (see Sec-
tion 3.4.4), and our DCSE-DAH (see Section 3.4.6) approach.

For that purpose, these approaches are ported and modified to support a generic sensor
suite and delayed measurements. To avoid confusions, the modular variants are denoted as
MDCSE-DAH and MDCSE-DP*, respectively. Note that MDCSE-DP* and MDCSE-DAH
do not support adding or removing estimator instances during mission, as the correlations
between agents would be violated, i.e. the state space of individual agent is not allowed to
change. MDCSE-DP* is performing updates on the global full state, while the state prop-
agation is performed isolated on each agent. Therefore, MDCSE-DP* can be considered
as baseline approach performing statistically equivalent as a centralized EKF operating
on the global full state.

The MDCSE-DAH approach uses per agent locally the MMSF-DP filter formulation
(see Section 4.4) in the instance handler H which is embedded in collaborative instance
handler HA. The HA maintains additionally a history of factorized cross-covariances 𝒞HA
relating to other agents, a history of correction terms ℬHA

, and a history of measurements
𝒵HA

, as depict in Figure 7.4, to support collaborative/inter-agent observations. Each phys-
ical sensor is associated with a filter node S that allows for isolated propagation steps, but
private update steps are performed of the agent’s local full state. Inter-agent observations
require information exchange between participating agents’ handlers HA𝑖, 𝑖 ∈ P

In the limit of a single sensor per agent, DC-MMSF behaves like MDCSE-DAH. The
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Figure 7.3: Shows the block diagram of the multi-agent simulation framework used in Sec-
tion 7.5. Each agents’ estimation framework is defined by a sensor suite consisting of multiple
sensor models. It can be loaded and stored into a human-readable dataset or be generated
from a set of emulated sensors. Each sensor suite allows generating a set of measurements,
initial beliefs, and to obtain the true state, which is a prerequisite for the ANEES evalua-
tion. Based on the sensor suite’s sensor models, each agent’s collaborative instance handler
HA instantiates an appropriate IKF instance S. All measurements in Hist{𝑡𝑘,M𝑘} from the
sensor suites are processed sequentially and chronologically sorted, while individual sensor
delays are configurable.To guarantee reproducibility and a deterministic simulation behavior,
agents perform local communication by sharing the same memory space.

main difference between both is that the cross-covariance factors are maintained in the
instance S per sensor in DC-MMSF, while in MDCSE-DAH they are maintained in the
collaborative instance handler HA. This also means, if the HA in DC-MMSF, maintains
many sensor instances S, DC-MMSF becomes more efficient, as it operates on sub-states
of the agent’s local full state.

7.5.2 Sensor Measurement Models and State Definitions
In our AINS, an indirect error estimation is performed [104], with x = x̂�x̃ (type-1 error).
This requires observations to be expressed by their error z̃ = �ẑ � z. This measurement
error needs to be linearized with respect to the error state x̃ at the current estimate
z̃ = Hx̃ with the measurement Jacobian H = 𝜕ℎ

𝜕x
x

𝜕x̃
⃒⃒
x̂ for the measurement function

z = ℎ(x). Details on the error-state definition,the measurement models and Jacobians can
be found in Section 2.9.

Figure 7.5 shows the spatial frame constellation of our experiments. Each agent’s sensor
(e.g., IMU ℐ, barometer 𝒫, ranging tag 𝒯 ) is rigidly attached with respect to a body
reference frame ℬ and requires a spatial calibration state, e.g., ℬ

ℬpℛ and ℬRℛ specifying
the translation and orientation of the sensor reference frame ℛ with respect to the body.

Stationary ranging anchors are modeled as individual agents with communication and
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Figure 7.4: MDCSE-DAH: Shows the multi-sensor fusion framework of individual agents,
consisting of a collaborative instance handler HA maintaining a MMSF-DP handler H, which
again maintains various estimator instances S for a specific type. The sensor suite provides
measurements to the instance handler, which delegates them to the appropriate filter in-
stance, which performs the filter steps exactly (considering locally available estimates). For
inter-agent joint observation, information exchange between participating handlers HA is
needed.

processing capabilities, where each estimates – as spatial calibration state – the position
between the global reference frame {𝒢} and the origin of anchor position {𝒜} as 𝒢

𝒢p𝒜.
An error in these parameters degrades the estimation performance, and an inexact offline
calibration may lead to unmodeled errors and estimation inconsistencies [36]. Therefore,
we treat observable calibration parameters as random variables that are estimated in
the corresponding estimator instance, allowing for online self-calibration. Further, it al-
lows modeling flexible and time-varying relative constraints (spatio-temporal extrinsics)
between the sensors and the body reference, e.g., by a random walk process.

Figure 7.5: Spatial frame constellation of a multiagent system navigating in space using
range measurements between stationary ranging anchors to recover the 6-DoF pose on each
agent. Additional relative range measurements between agents’ ranging tags, as well as
pressure readings from a barometer are used.

The IMU is used as state propagation sensor, with the state xℐ defined as

xℐ =
[︁

𝒢
𝒢pℐ ; 𝒢

𝒢vℐ ; 𝒢qℐ ; ℐb𝜔 ; ℐb𝑎

]︁
(7.1a)
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with 𝒢
𝒢pℐ ,

𝒢
𝒢vℐ , and 𝒢qℐ as the position, velocity, and orientation of the IMU ℐ w.r.t. to the

global navigation frame 𝒢. ℐb𝜔 and ℐb𝑎 are the estimated gyroscope and accelerometer
biases to correct the related IMU readings (see Equation (2.79)). The unobservable pose
between the body frame {ℬ} and IMU {ℐ}, ℬ

ℬpℐ and ℬqℐ , are constants that need to
be known a-priori . The gravity vector is assumed to be aligned with the z-axis of the
navigation frame 𝒢g = [0, 0, 9.81]T.

The barometer measures the local absolute pressure and its position ℬ
ℬp𝒫 with respect

to the body reference frame leads to the sensor extrinsic state x𝒫 , which is defined as

x𝒫 =
[︁

ℬ
ℬp𝒫

]︁
(7.1b)

with ℬ
ℬp𝒫 being the position between the body reference frame and the sensor, which is

assumed to be fixed and known a-priori . The measurement Jacobian and further details
can be found in Section 2.9.4.

The range sensor measures the distance between two devices, e.g., a ranging device
based on UWB measures the distance between two antennas. For the moving ranging tags
{𝒯 } and stationary ranging anchors {𝒜}, a spatial displacement to a reference frame is
estimated. The anchor state x𝒜 is

x𝒜 =
[︁

𝒢
𝒢p𝒜

]︁
, (7.1c)

which is not changing in time 𝒢
𝒢ṗ𝒜 = 0. The tag state x𝒯 is

x𝒯 =
[︁

ℬ
ℬp𝒯

]︁
(7.1d)

with ℬ
ℬp𝒯 being the transformation between the body reference frame ℬ and the UWB tag.

The spatial displacement is not changing in time ℬ
ℬṗ𝒯 = 0. The measurement Jacobian

and further details can be found in Section 2.9.6.

7.5.3 Nonlinear Observability Analysis
Since the proposed experiment is a non-trivial estimation problem with different (inter-
agent) joint observations and an IMU as a state propagation sensor, an nonlinear observ-
ability analysis (see Section 2.9.7) helps to understand the properties of the estimation
problem at hand, but does not reflect the behavior of the linearized or actual system.
Previous works, e.g., [17, 49], have shown the utility of a non-linear observability analysis
of the estimation problem in predicting/interpreting the latter evaluation result. Without
loss of generality, this analysis can be applied to multiagent systems, by building a full
state vector from the individual agent’s estimators and using the system dynamics and
measurement models appropriately. By determining the rank of the observability matrix
of the noise-free nonlinear system, we can analyze, if the system is local weakly observable
or not. Note that unobservable dimensions can be states or a combination of them. In this
section, we apply the nonlinear observability analysis to the estimation problem depicted
in Figure 7.5 with different numbers of agents and anchors. Three cases are of interest: (i)
a single agent with 𝑁 anchors, (ii) multiple agents (𝐾) without anchors, and (iii) multiple
agents (𝐾) with 𝑁 anchors. In the analyses, we assume an excitation in all three axes of
the IMU’s accelerometer and gyroscope, and that the gravity vector is known and aligned
with the z-axis of the navigation frame.

Single Agent with Anchors

At first, we study the sensor estimators observability proprieties in case of a single agent
measuring ranges (T-A) to 𝐾 anchors (see Table 7.1). The full state vector has four un-
observable dimensions, involving the absolute position and yaw orientation (roll and pitch
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Single agent (Tag+IMU) with 𝐾 anchors
num. fixed AA-A

(meshed)
Absolute
position 0 1 2

0 0 4 1 0
0 1 0 0 0
1 0 4 1 0

Table 7.1: Overview of unobservable dimensions of a single agent with an IMU for propa-
gation and an ranging tag observing 𝐾 anchors. Optionally, anchors can perform measure-
ments (fully meshed) among themselves (A-A), anchors can be set to be known globally
(𝒢p𝒜{1,...,𝐾}

), and the agent can obtain absolute position measurements via e.g. an GNSS
sensor. The green cell color indicates observable configurations, orange those where the
global yaw orientation is unobservable, and red indicates that the global yaw orientation
and absolute position is unobservable (see Section 7.5.3).

are observable in a VINS [118]) of the whole system with respect to the global navigation
frame {𝒢}. In other words, one can estimate the relative constellation of the agent and
the anchors. Once the agent obtains absolute position measurements, e.g., provided by a
GNSS sensor, the full state vector is observable. This is due to the yaw orientation being
available through the positional change – a sort of pseudo measurement. Note that this
information propagates via (joint) range measurements between the tag and the anchors
to the anchors’ estimators. On the other hand, the same effect is achievable by fixing a
certain number of anchors in the global frame. Fixing in this context means, to assume
that the state is known exactly and treated as known constant. Fixing one anchor makes
the absolute position of the full state observable and leaves the global yaw orientation
unobservable, which is rendered observable by fixing a second anchor.

Multiple Agents without Anchors

Second, we study the observability of multiple agents when they are beyond the anchors’
sensing range (see Table 7.2). By obtaining fully meshed tag to tag (T-T) range measure-
ments, a system of at least three agents (two agents leave one dimension ambiguity in
the spheres’ intersection) will encounter 9 unobservable dimensions in the full state space.
Again, the estimation is lacking absolute information, spanning 9 dimension over all agents’
position, velocity, and orientation in the global frame jointly observable. Remarkably, this
means that the whole system knows all agents’ relative position and orientation with re-
spect to each other. Again, if one agent obtains absolute position measurements (e.g.,
provided by a GNSS sensor), the full state vector is rendered observable. The same holds
for an estimation problem, if the range measurements are replaced by relative position
measurements between the IMUs.

Multiple Agents with Anchors

Finally, we study the case of multiple agents measuring ranges to multiple stationary
anchors. Both agents and anchors optionally perform fully meshed range measurements
among themselves, T-T and A-A, respectively. Further, agents potentially obtain range
measurements between the anchors and the tags T-A (see Table 7.3).

If the anchors cannot communicate (exchange information) with the agents (no T-A),
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𝑀 agents (Tag+IMU)
I-I T-T num. abs. position 𝑁

(meshed) (meshed) 0 1 2
0 0 15𝑀 15(𝑀 −𝑁) 15(𝑀 −𝑁)
1 0 9 0 0
0 1 9 0 0
1 1 9 0 0

Table 7.2: Analysis of all unobservable dimensions spanned by 𝑀 agents with IMUs and
ranging tags to observe each other via fully meshed inter-tag distance measurements (T-T)
or via fully meshed relative IMU position measurements (I-I). Once more, agents can obtain
absolute position measurements via, e.g., a GNSS sensor. A green colored cell indicates
fully observable configurations, orange that the global position, velocity and orientation of
all 𝑀 agents are jointly observable (span a 9 dimensional unobservable subspace), and red
indicates that the whole state space is unobservable (see Section 7.5.3).

e.g., new anchors are out of range, but can use a bidirectional mesh with other anchors,
one will find 15 unobservable dimensions in the state space. We encounter two jointly
observable sub-spaces: (i) the 9 unobservable dimensions of the multiagent system that
has no information from the anchors (see Section 7.5.3), and (ii) 6 additional unobservable
dimension from the anchors’ global pose (position and orientation). Providing at least one
agent with absolute position information solves the first unobservable subspace. Similarly,
fixing at least two anchors makes the second subspace observable. With no communication,
both clusters are isolated, and providing absolute information to one cluster does not
propagate it to the other cluster.

If T-A measurements are conducted without absolute information, by either fixing two
anchors or providing absolute position measurement to one of the agents, four dimensions
are unobservable as with a single agent configuration (see Section 7.5.3). Meaning that
with at least three agents in the system, absolute position and yaw orientation of all
agents and anchors are jointly observable. The limit of at least three agents comes from
the multi-agent case without anchors, which, if violated, results in additional unobservable
dimensions. The anchors in the system allow for the velocity and roll/pitch orientation
to be observable. Again, fixing at least two anchors globally or supplying an agent with
absolute position information, e.g., by a GNSS sensor, renders the full state observable.

7.5.4 Scenario S1

For evaluating the estimator credibility based on an ANEES evaluation (see Section 2.6.3)
and the computation time of individual estimator instances in a realistic scenario, we
use all five Machine Hall sequences (MH_{01 . . . 05}) of the EuRoC dataset [20] in a
Monte Carlo simulation with 20 runs4, to emulate an indoor (GNSS-denied environment)
inspection with five MAVs. A single simulation run takes 135 s, which is the longest flight
time among the Machine Hall sequences between take-off and landing. Each MAV is
equipped with an IMU, an emulated barometer, and an emulated ranging transceiver
(tag), for both communication and pair-wise ranging between other ranging modules in

4Please note, that the IMU measurement noise, in contrast to other measurement noise, did not change
between Monte Carlo simulation runs, as the real-world IMU measurements were directly used. This
compromise was made to justify the applicability on MAVs.
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𝑀 agents (Tag+IMU) and 𝐾 anchors
num. fixed. anchorsA-A T-A num. abs. T-T
0 1 2

1 0 0 1 15 12 9
1 1 0 0 4 1 0
1 1 0 1 4 1 0
1 1 1 0 0 0 0

Table 7.3: Case study results of the unobservable dimensions of 𝑀 agents with IMUs and
ranging tags measuring fully meshed unidirectional ranges to 𝐾 stationary anchors (T-A).
The anchors can perform fully meshed measurements among themselves (A-A). If necessary,
agents can obtain absolute position measurements via e.g. an GNSS sensor, perform fully
meshed range measurements between the tags (T-T), and anchors can be set to be known
globally. Green coloring indicates fully observable configurations, yellow an unobservable
global yaw orientation, orange an unobservable global yaw orientation and position, and red
indicates the two unobservable sub-spaces of agents and anchors (see Section 7.5.3).

communication range, using, e.g., DecaWave’s5 UWB ranging devices.
Figure 7.5 depicts the spatial frame constellation. Twenty-five stationary ranging transceiver

(anchors) are assumed to be deployed to cover the area of interest as shown in Figure 7.6
with a communication range of 4 m. The communication range is on purpose short, to
justify the deployment of 25 anchors and to challenge the estimation problem: (i) anchors
and MAVs are meeting again, meaning that they are correlated and needs to be considered
properly, (ii) some anchors have no direct link to (fixed) reference anchors, (iii) it increases
the total amount of estimator instances |S| and handlers |HA|.

According to a nonlinear observability analysis assuming persistent communication
and sensing capabilities, the absolute position of two anchors needs be known in order
to render this nonlinear estimation problem fully observable. Since the system suffers
from approximated models, linearization errors, multi-rate measurements, and limited
communication range, we found 5 fixed anchors close to the take-off position of the MAVs
are a good compromise regarding the convergence of the MAVs’ estimates under realistic
conditions. Still, the global full state is, due to limited communication and sensing range,
not observable, in particular due anchor position estimates that are not overlapping with
the sensing range of fixed anchors.

Since the ranging anchors are assumed to possess communication and computation
capabilities, we model them as individual agents with a sensor estimator handler and one
estimator instance. This results in 30 agents with in total 35 estimator instances: five
agents each with an estimator instance for an IMU, barometer and ranging tag, and 25
anchors with a single estimator, while fixed sensor estimates are assumed to be constant
and known, and therefore not considered in the estimation process. For this scenario, the
system’s global full state vector with 165 elements is

xS1
=
[︁
{xℐ ; x𝒫 ; x𝒯 }{1,2,3,4,5}; x𝒜{6,...,25}

]︁
. (7.2)

The ranging devices perform meshed and uni-directional measurements at a rate of
5 Hz with other devices in a range of 4 m, with a standard deviation of 𝜎r = 0.1 m, from
𝑡 = 0.3 s on, with a random message drop rate of 10 % (simulating, e.g., non-line-of-sight
conditions), and a latency of 𝑡lat = 0.

The barometer provides pressure information at 20 Hz, with a standard deviation of
5https://www.decawave.com/



7. Distributed Collaborative Modular Sensor Fusion 185

Figure 7.6: Scenario S1: Top view on the anchor placement (bullets) and the trajectories
of the Machine Hall sequences of the EuRoC dataset [20] in red, green, blue, cyan, and
magenta. The filled orange circles show the communication range of 4 m per ranging anchor.
Some anchors close to the starting position are assumed to be constant and known (fix), to
define the navigation reference frame.

𝒢
𝒢p𝒜

ℬ
ℬp{𝒯 ,𝒫}

𝒢
𝒢{p,v}ℐ

𝒢qℐ ℐb𝑎 ℐb𝜔

𝜎0 1 cm 1 cm 0.1 {m,m/s} 5 deg 0.1 m/s2 0.01 rad/s

Table 7.4: Scenario S1: Initial standard deviation of the IMU and sensor self-calibration
states.

𝜎𝑃 = 1 Pa (a pressure difference of 1 Pa translates into a height difference of ∼8.43 cm in
the standard atmosphere), a latency of 𝑡lat = 0, and a random message drop rate of 10 %.

The IMU provides biased and noisy measurements at 200 Hz with a noise density
of 𝜎𝑎 = 0.002 m/s1.5 and 𝜎𝜔 = 0.00017 rad/s0.5 for the accelerometer and gyroscope,
respectively.

Note that in this constellation, relative range measurements between ranging modules
always result in global joint observations, while local barometer readings result in local
joint observations between the barometer and IMU. Range measurements between tags
require four estimator instances, two relating to the IMUs and two relating to the ranging
tags, and lead to an inter-agent quad-joint observation. Range measurements between tags
and anchors result in an inter-agent triple-joint observations requiring an IMU, a tag, and
an anchor.

Per simulation run, all states are initialized with a random offset around the true state
based on the initial uncertainty defined in Table 7.4.
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Accuracy and Credibility

In Tables 7.5 and 7.6, no remarkable differences in the ARMSE and ANEES between the
DC-MMSF and MDCSE-DAH are noticeable, even though they perform joint observation
on different sets of estimator instances. This indicates that DC-MMSF indeed performs
quite close to the supposedly exact (centralized equivalent) MDCSE-DP* formulation in
view of the credibility.

The ANEES of all states should be on average 3, with a lower and upper 99.7%
credibility bound of [1.63, 4.89] for 20 Monte Carlo runs (see Section 2.6.3). The self-
calibration capabilities of the sensors’ extrinsic states given the initial condition listed
in Table 7.4 and noisy range measurements (𝜎r = 10 cm) can be seen in Table 7.6 (last
three columns) for the beliefs x𝒫 , x𝒯 , and x𝒜. The average anchor positions 𝒢

𝒢p̄𝒜 of
the anchors 𝒜6−25 (A11−30) have an average error of 0.71 cm using DC-MMSF, although
some anchors are not globally observable via range measurements from nearby anchors
and agents, as no direct or indirect link6 to the fixed anchors can be established. This
means the estimators in these globally unobservable areas are slightly drifting, so that
the tag and anchor position, were on average in this setup estimated less accurately using
either strategy in contrast to the estimated anchor position of, e.g., agent A11 (anchor
𝒜6) Figure 7.7.

Figure 7.7 shows a subset of the global full state to indicate the performance of DC-
MMSF in view of credibility. We chose to display the position of the fifth MAV’s estimated
position and gyroscope bias using DC-MMSF in the 20th run. We show the estimated
anchor position of A11 (anchor 𝒜6) which near fixed anchors and of A28 (anchor 𝒜23)
having no direct connections to fixed anchors. All estimates remain within the 3𝜎, and thus,
credible with a general tendency of slight underconfidence. Given the implicit maximum
determinant completion in the IKF paradigm (described in Section 6.3.3), this result is
expected. The estimated anchor position of A28 – due to a lacking observability – is not
converging, in contrast to A11.

Execution time

Regarding the single threaded total execution time, DC-MMSF is 2.07× faster than
MDCSE-DAH as shown in Table 7.6. In the one hand MDCSE-DP*, which operates on
the global full state (with 165-elements) in each filter step, leads to the smallest average
trajectory error (∼4% lower than our proposed DC-MMSF, while MDCSE-DAH and DC-
MMSF performed similarly) as shown in Table 7.5. On the other hand, using MDCSE-DP*
leads a 37.2× higher computation time compared to DC-MMSF as shown in Table 7.6,
assuming perfect communication between the agents and the centralized fusion entity.
This renders the MDCSE-DP* approach impractical for complex swarms in real environ-
ments. Please note, that in a real application, the computation load would be distributed
across multiple agents, which further reduces the total execution time for the distributed
approaches, DC-MMSF and MDCSE-DAH.

In Figure 7.8, the execution time of different filter steps performed on agent A5 (one of
the five moving MAVs) using DC-MMSF and MDCSE-DAH is shown. The average prop-
agation time using DC-MMSF is ∼2.6× lower compared to MDCSE-DAH and highlights
clearly the advantage of isolated propagation in estimator instances, over performing the
propagation on the agent’s full state in MDCSE-DAH. As expected, the speed-up using
DC-MMSF over MDCSE-DAH for isolated joint observation in this particular configura-

6An indirect link might be established if anchors or agents are still in the range of at least two fixed or
fully observable anchors, thus their states are also observable. Therefore, these globally observable agent
can propagate the global information to other anchors in their range, which constitutes a sort of global
information relaying between agents or anchors.
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20 MC runs [𝑐𝑚] [𝑐𝑚/𝑠] [𝑑𝑒𝑔] [𝑐𝑚/𝑠2] [𝑟𝑎𝑑/𝑠]

Strategy 𝒢
𝒢p̄ℐ

𝒢
𝒢v̄𝒢

𝒢q̄ℐ ℐb̄𝑎 ℐb̄𝜔

AR AN AR AN AR AN AR AN AR AN

DC-MMSF 3.69 2.87 4.42 3.45 1.09 1.84 0.84 1.35 0.0018 1.42

MDCSE-DAH 3.69 2.92 4.42 3.45 1.09 1.84 0.84 1.36 0.0018 1.42

MDCSE-DP* 3.55 2.9 4.15 3.33 1.04 1.82 0.85 1.31 0.0016 1.31

Table 7.5: Scenario S1: The average ARMSE and ANEES of the agents A1−5 navigation
states using different fusion strategies. Best values are in bold letters. Further details are
given in Section 7.5.4.

20 MC runs [𝑠] [𝑐𝑚] [𝑐𝑚] [𝑐𝑚]

Strategy 𝑡𝑡𝑜𝑡
ℬ
ℬp̄𝒫

ℬ
ℬp̄𝒯

𝒢
𝒢p̄𝒜

AR AN AR AN AR AN

DC-MMSF 1575 0.62 1.94 0.79 12.3 0.71 8.34

MDCSE-DAH 3265 0.63 2.53 0.79 12.4 0.71 8.32

MDCSE-DP* 58647 0.58 2.32 0.79 13.6 0.62 8.62

Table 7.6: Scenario S1: The average ARMSE and ANEES of the average over the anchor
agents A11−30 estimated states, and the average total execution time 𝑡𝑡𝑜𝑡 of all estimators
using different fusion strategies. Best values are in bold letters. Further details are given
in Section 7.5.4.

tion is small: Local joint observation are processed ∼1.68× faster and inter-agent joint
observation ∼1.53× faster for agent A5. The reason is that the stacked state vector size
does not differ much in this particular experiment (therefore, similar execution times).
An inter-agent (e.g., A𝑖 and A𝑗) range measurement between tags (T-T) using DC-MMSF
consists of four estimator instances’ states, two IMUs and two tags

xp =
[︁
xℐ𝑖

; x𝒯𝑖
; xℐ𝑗

; x𝒯𝑗

]︁
(7.3)

with 36 elements. Using MDCSE-DAH the calibration states of the barometer are included

xp =
[︁
xℐ𝑖

; x𝒯𝑖
; x𝒫𝑖

; xℐ𝑗
; x𝒯𝑗

; x𝒫𝑗

]︁
(7.4)

leading to 42 elements.
To demonstrate the effect of increasing the number of sensors per agent, we conduct a

further experiment in Section 7.5.5 .

7.5.5 Scenario S2

The aim of the second experiment S2 is, to compare the execution time of the proposed
approach against MDCSE-DAH.

In order to assess the effects of additional estimator instances and increasing sensor
delays, we slightly modify the experiment defined in Section 7.5.4. No anchors are involved,
meaning no tag to anchor (T-A) measurements are performed, as it would increase the
total number of agents. As the agents would suffer from lacking global information, each
agent obtains measurements from an absolute position sensor at a rate of 5 Hz without
sensor delay. Further, the UWB range is increased to 100 m and the measurement drop
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(a) IMU position estimate of A5.
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(b) Gyrocsope bias estimate of A5.0 20 40 60 80 100 120 140
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(c) Estimated anchor position of A11.
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(d) Estimated anchor position of A28.

Figure 7.7: Scenario S1: The single run NEES (top row) and error (bottom row) of the
estimated position of agent A5, the gyroscope bias of agent A5, and the anchor positions of
agent A11 (sixth anchor) and A28 (23rd anchor) using DC-MMSF of the 20th simulation run.
In yellow, blue, red for x, y, z axis, respectively. All estimation errors remain between their
3𝜎 boundary (black dashed line). The experiment is described in Section 7.5.4.
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rate is set to 0 %, guaranteeing a persistent and fully meshed T-T measurements at 5 Hz
and with no sensor delay modeled.

Each of the five agents has a variable number of barometers (𝐾 = {1, 3, 5}) to emulate
the effect of additional sensors7. This increases the full state vector size per agent

xA =
[︁
xℐ ; x𝒯 ; xAbs; x𝒫{1,...,𝐾}

]︁
(7.5)

with the absolute position sensor’ extrinsic calibration parameter xAbs =
[︁

ℬ
ℬpAbs

]︁
and

ℬ
ℬṗAbs = 0.

For this scenario, the system’s global full state vector varies with 𝐾 barometers per
agent

xS2
=
[︁
xℐ{1,...,5}

; x𝒯{1,...,5}
; xAbs{1,...,5}

; x𝒫{1,...,5}×𝐾

]︁
. (7.6)

The update rate of each barometer is lowered to 5 Hz with a drop rate of 0 % and the
sensor latency is increased in steps (𝑡lat = {0, 0.05, 0.1} s), allowing us to show the impact
on the average execution time on the individual filter steps by comparing the proposed
DC-MMSF against the ported MDCSE-DAH approach.

Figure 7.9 shows clearly the advantage of performing IKF on a sensor level in our
proposed DC-MMSF instead of performing it on the estimator instance handler HA level
(MDCSE-DAH). First, it can be clearly seen that the average execution for MDCSE-DAH
increases for the inter-agent joint observation with an increasing number of barometers
(note that we added no sensor delay to T-T measurements to provoke out-of-order mea-
surements). Second, an increased sensor delay has more impact on the execution time
since more measurements – mostly IMU measurements – need to be recalculated due to
the delay. In case of MDCSE-DAH, these measurements need to be applied on the agent’s
full state, whereas DC-MMSF performs them isolated. Theoretically, the average execu-
tion time using DC-MMSF should scale with 𝒪(1) being agnostic to the total amount of
estimator instances in the system. The slight execution time increase is caused by mem-
ory access overheads, e.g., the buffer implementation of Dict does not ensure a constant
memory access time, which is theoretically the case.

7.6 Conclusion

Our proposed Distributed Collaborative Modular Multi-Sensor Fusion (DC-MMSF) algo-
rithm based on IKF leverages the seminal work in the domain of collaborative state esti-
mation (e.g., CL) bringing them to maturity by supporting generic and changing sensor
constellations, and by supporting delayed measurement. It breaks the classical full-state-
per-agent paradigm up into single individual estimator instances in the swarm, blurring
the lines between the strict distinction of off-board and on-board sensors. Our approach
further exploits the fact that measurement sensitivity matrices in typical sensor fusion
problems are sparse and that the state propagation can be performed independently. While
correlations are efficiently maintained, communication is only required at the moment of
interactions, and the correlations are restored at the moment they are needed again. This
renders DC-MMSF as a fully scalable CSE approach with theoretically a constant com-
plexity in communication and maintenance.

7Note that fusing multiple proprioceptive (propagation) sensors, e.g., an IMU is non-trivial as discussed
in [36], since (i) relative pose constraints need to be defined in sensor updates, and (ii) the definition of the
measurement Jacobian for sensor updates varies with the number of proprioceptive sensors. Supporting
redundant proprioceptive sensors is important to mitigate a single point of failure, and we plan to address
a generic solution to fuse multiple proprioceptive in future work.
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The approach was validated on an indoor navigation scenario in a Monte-Carlo sim-
ulation based on a real dataset for MAVs with artificially augmented sensing modalities,
manifesting that the proposed approach outperforms recent approaches, while achieving
a similar estimation performance in terms of accuracy and credibility.

In future work, we will investigate on consistent and distributed cooperative multi-
agent multi-target tracking as an extension to the proposed DC-MMSF algorithm. Fur-
thermore, it would be interesting to integrate DC-MMSF in existing filter-based VIO
algorithms.



7. Distributed Collaborative Modular Sensor Fusion 191

(a) MDCSE-DAH

(b) DC-MMSF

Figure 7.8: Scenario S1: Logarithmic duration of different filter steps on agent A5 fusing
different fusion strategies in the 20th Monte Carlo simulation run in the experiment described
in Section 7.5.4: propagation (prop), isolated joint observation (joint), and inter-agent joint
observations (inter). The corresponding entries in the legend show the average and the
accumulated time of each type.
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Figure 7.9: Scenario S2: Shows the impact of both, (i) additional sensors and (ii) increasing
sensor latency on the average execution time for different filter steps: propagation in purple
(prop), private observations in yellow (priv), local joint observations in red (joint), and inter-
agent joint observations in blue (inter). Please note the different scales in the y-axis and that
no private sensor updates have been performed as described in Section 7.5.5.



Chapter 8

Conclusion and Outlook

In the preceding chapters, we have investigated decoupling strategies for Kalman filter
formulations, in particular for addressing the key problems of scalability and handling
delayed updates. In this chapter, we summarize our findings and provide an outlook on
possible research directions.

8.1 Summary and Contributions

In Chapter 3, we aimed at generalizing filter-based Distribued CSE (DCSE). Therefore,
we formulated the problem as a networked dynamic model with decoupled dynamics and
sparsely coupled outputs. We carefully study the estimation problem on an example with
three agents and propose a novel approximated DCSE algorithm denoted as DCSE-DAH
which was published in [76]. We studied and compared different architectures and evalu-
ated their performance with respect to scalability and accuracy in Monte Carlo simulations
and on a real-world dataset for MAVs.

In Chapter 4, we generalize filter-based modular sensor fusion from a DCSE perspec-
tive, which allows us to bridge the gap between those two domains. We proposed a modular
sensor framework denoted as MMSF-DAH, which lays the basis for the Isolated Kalman
Filtering (IKF) paradigm and compared it against different decoupling approaches, that
we have ported and adapted from DCSE. We evaluated their performance with respect to
scalability and accuracy in Monte Carlo simulations and again on a real-world dataset for
MAVs.

In Chapter 5, we revisited the infrastructure-based UWB ranging problem using the
MMSF-DAH framework in order break the computational barrier and allows to effi-
ciently use all range measurements in a fully meshed UWB ranging network. In extensive
Monte Carlo simulations we studied the anchor self-calibration capabilities using the IKF
paradigm. We extended a real-world dataset for MAVs with synthetics set of UWB ranging
devices to demonstrate a real-world application.

In Chapter 6, we propose a new Kalman filter decoupling paradigm, denoted as Isolated
Kalman Filtering (IKF), which is a generalization of our DCSE-DAH approach [76] and our
MMSF-DAH approach [74] supporting delayed measurements. The paradigm is built upon
approximations introduced by Luft et al. in [94], while we proof that the approximation
for the cross-correlations in case of a joint measurement, was actually equivalent to a
maximum determinant completion of the incomplete covariance matrix. We investigated
on the filter credibility and steady-state performance in different observation graphs, and
provide a reference implementation, in form of a generic C++ framework, to the public.

Finally, in Chapter 7, we unified DCSE and modular sensor fusion in the DC-MMSF
framework, which again is build upon the IKF paradigm. This approach allowed used
to address efficiently the issue of a time-varying sensor configuration per agents and to

193
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support asynchronous measurements. The approach was evaluated on a multi-agent indoor
navigation scenario using a real-world dataset for MAVs with a synthetics set of UWB
ranging devices.

By concluding this work, we are exited to propose a novel decoupling scheme for
Kalman filters and hope that our findings and our view on modular estimation frame-
works help the robotics community to address existing issues and to realize more generic
estimation frameworks.

8.2 Limitation and Future Research
In order to become an integral part for commercial and research applications, exhaustive
real-world experiments need to be conducted and parts of the framework need to be open-
sourced. Especially navigating in closed-loop control, would reveal important aspects, such
as the general applicability using commercial off-the-shelf components. A disadvantage of
real-world experiments in the early stages of development is, that systematical errors in
the problem formulation might be shadowed by the experimental setup.

Nevertheless, the datasets used in our evaluations are accredited in the robotics com-
munity and commonly used as benchmark for VINS. Our models and kinematics are
applied in other estimation frameworks such as in MaRS [18] by Brommer et al. . A fil-
ter consistency and credibility analysis can only be performed in a controlled simulation
environment by performing Monte Carlo simulation runs, see Section 2.6.3. Scalability
analyses with parameter sweeps regarding, e.g., the number of agents, sensors, or sensor
delay become quickly infeasible in real-world experiments, e.g., due to space and hardware
constraints. Consequently, most of our evaluations performed can only be addressed in
simulation to guarantee a fair comparison, deterministic behavior, and a reproducability
of the results. The key challenge towards real-world experiments using MAVs remains in
the vast engineering effort and in the complexity of designing a distributed and scalable
estimation framework.

In addition to the limitations in the above discussion, several research questions can be
defined. In context of modular and decoupled sensor fusion, the applicability of reference
sensors for differential sensor fusion would be interesting. For instance, a local pressure
sensor, magnetometers, or sun (star) sensors could be treated as additional sensor in the
MMSF-DAH formulation, to compensate local disturbances or allow for relative height
or heading estimation in an AINS. In that direction, an extension for target-tracking
while performing localization is an integrable part of a generalized collaborative estima-
tion framework. Targets can be handled as additional IKF nodes in the MMSF-DAH
formulation, with target specific dynamic models. In the same way, stationary landmarks
(persistent features) could be integrated using dedicated IKF nodes. The challenge regard-
ing a collaborative target-tracking remains, apart form the unique (target) association, in
the track-to-track fusion of the distributed estimates, while accounting for the correla-
tions between other (decoupled) estimates efficiently. An extension for collaborative tar-
get tracking in the proposed DC-MMSF framework might be rather trivial. Agents could,
e.g., exchange local beliefs of tracked targets, once they are in communication range and
if the beliefs were changed meanwhile. Then they need to find a consensus about their be-
liefs, e.g., based on covariance intersection, and apply a correction term in their correction
buffer to account for the correlation between other local beliefs. The same strategy could
be applied for estimated landmark positions or other reference parameters.

Another integrable part of nowadays AINS is to fuse visual-, thermal-, radar-, or
LIDAR-based information. An efficient and de facto gold standard in filter-based ap-
proaches is to formulate a MSCKF, which is augmenting the local belief by stochastic
clones, that allows to formulate constraints relating to beliefs at different time instances.
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Stochastic clones can be – again – handled as additional IKF nodes in the MMSF-DAH
formulation and feature observations can be rendered as local joint updates incorporating
a set of IKF nodes. Persistent features can be maintained natively in the MMSF-DAH
formulation, as mentioned before. An investigation on the efficiency and introduced over-
head of a truly-modular MSCKF in contrast to an application specific (tailored) MSCKF
formulation would be interesting and if the decoupling through the IKF paradigm could
compensate for the introduced overhead in the data management within the MMSF-DAH
approach.

With respect to the IKF paradigm, we suggest investigating further in the theoretical
analysis on the observability properties of a decoupled full-state. In particular, Conjecture 1
is lacking a theoretical proof. Our evaluation in Section 5.3 and Section 6.4 gave some
insights to that problem, but details on the convergence behavior of the decoupled state and
a theoretical observability analysis on the linearized and discretized system are missing.

Regarding observability and sensor self-calibration in a modular estimator, a two-stage
approach that allows a seamless switching between a centralized-equivalent and an isolat-
ed/decoupled formulation, would combine the advantages of both strategies – accuracy
and efficiency. The switching could be, e.g., motion dependent, since the observability of
an AINS’ states is typically motion related.

Currently under investigation is an application for autonomous bridge inspection us-
ing a collaborating and communicating swarm of MAVs in partially GNSS denied areas
in order to obtain a digital twin of the infrastructure and to revisit points of interests.
Individual agents will rely on a VINS with a GNSS receiver and a ranging device, to sense
distances to other agents and stationary ranging anchors. In the foreseen demonstration,
agents will form a relative constellation that allows for a more accurate and robust lo-
calization in GNSS-denied areas (e.g., below the bridge), by incorporating relative range
measurements - which allows, in some sense, for sensor sharing or i.e. to relay absolute po-
sition information to other agents. A similar constellation was evaluated in Section 7.5.5.
The optimal relative formation can be determined by maximizing the Fisher information,
as proposed by Cossette et al. in [28], and would allow for collision avoidance between
agents and with obstacles.



Acronyms

AINS Aided Inertial Navigation System
ANEES Average Normalized Estimation Error Squared
ARMSE Average Root Mean Square Error
ATE Absolute Trajectory Error
AUV Autonomous Underwater Vehicle
BLUE Best Linear Unbiased Estimator
CCSE Centralized CSE
CCSE-DP CCSE with Distributed Propagation
CI Covariance Intersection
CL Collaborative Localization
CLATT Collaborative Localization and Target Tracking
CNN Convolutional Neural Network
CSE Collaborative State Estimation
CSLAM Collaborative SLAM
DACC Distributed Approximated Cross-Covariance
DAH Distributed Approximated History
DAH-CSE DAH Collaborative State Estimation
DC-MMSF Distributed Collaborative Modular Multi-Sensor Fusion
DCL Distributed Collaborative Localization
DCSE Distribued CSE
DCSE-DACC DCSE based on Distributed Approximated Cross-Covariances
DCSE-DAH DCSE based on a Distributed Approximated History
DCSE-DP DCSE with Distributed Propagation
DCSE-DP* Decentralized CSE with Distributed Propagation
DDMV Distributed Discorrelated Minimum Variance
DMV Discorrelated Minimum Variance
DoF Degrees of Freedom
DP Distributed Propagation
EKF Extended Kalman Filter
ESEKF Error-State EKF
FC Fusion Center
GNSS Global Navigation Satellite System
GPS Global Positioning System
HiPR High Precision Ranging
ID identifier
IKF Isolated Kalman Filtering
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IMU Inertial Measurement Unit
INS Inertial Navigation System
KF Kalman Filter
LIDAR Laser Imaging Detection and Ranging
LLS Linear Least Squares
MAP Maximum A Posteriori
MaRS Modular and Robust Sensor-Fusion
MAV Micro Aerial Vehicle
MEMS Micro Electro Mechanical Systems
MLE Maximum Likelihood Estimation
MMSF Modular Multi-Sensor Fusion
MMSF-C Modular Multi-Sensor Fusion Centralized equivalent
MMSF-DACC Modular Multi-Sensor Fusion Decoupled Approximated Cross-Covariances
MMSF-DAH Modular Multi-Sensor Fusion Decoupled Approximated History
MMSF-DP Modular Multi-Sensor Fusion Decoupled Propagation
MMSF-MaRS Modular Multi-Sensor Fusion based on MaRS
NEES Mean Normalized Estimation Error Squared
MSCKF Multi-State Contraint Kalman Filter
NEES Normalized Estimation Error Squared
NIS Normalized Innovation Squared
NLOS non-line-of-sight
NTP Network Time Protocol
PDOP positional dilution of precision
RIO Radar-Inertial Odometry
RMSE Root Mean Square Error
ROS Robot Operating System
RPE Relative Pose Error
RSS received signal strength
RTOF return time of flight
SCIF Split-Covariance Intersection Filter
SKF Schmidt-Kalman Filter
SLAM Simultaneous Localization and Mapping
SVD singular value decomposition
TDOA time difference of arrival
TOA time of arrival
UAV Unmanned Aerial Vehicle
UKF Unscented Kalman Filter
UWB ultra-wideband
VINS Visual-Inertial Navigation System
VIO Visual-Inertial Odometry
DDMV Distributed Discorrelated Minimum Variance
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